Perdigão-2017: experiment layout

Thursday 23rd August, 2018

Project title:	NEWA – New European Wind Atlas
Authors:	José M. L. M. Palma, Robert Menke, Jakob Mann, Steve
	Oncley, José Matos and Alexandre Silva Lopes
Contacting author:	José Laginha Palma
Contributors:	Rebecca Barthelmie, Tyler Bell, Andreas Rettenmeier, Julie
	Lundquist, Maria Löther and Jorge Fernandes

Summary: This is the document on the location of the scientific equipment deployed in Perdigão-2017, comprising a total of 55^1 ground based instruments and many more sensors (344^2) installed at or close to the meteorological towers³, 50 in total. This document, the information in Perdigão web site and two companion Excel workbooks are the complete set of references on the experiment layout. To to the best of our knowledge, the information in these three documents is complete and accurate, with no need for consulting any other source.

This is version 1, identified by a watermark along the diagonal; any future version and changes will be referenced relatively to this version.

¹See Table 8 in page 26. These footnotes will stay, until a couple of open questions is answered. ²See section 2.4, Table 7 in page 17. ³See Table 2, page 6. This page intentionally left blank

Contents

1	Intr	oduction	2
	1.1	The purpose of this document	2
		1.1.1 Corrections and future versions	3
	1.2	Conventions and nomenclature	3
		1.2.1 Geodesic system PT-TM06/ETRS89	3
		1.2.2 Height, altitude and elevation	3
		1.2.3 A note on accuracy, error, precision and uncertainty	3
		1.2.4 Worksheet and workbook	4
	1.3	Contents	4
2	Том	er based equipment	5
	2.1	Towers identification	5
	2.2	Sonic anemometers	7
		2.2.1 Measurements uncertainty	8
		2.2.2 Handling the missing data	9
			11
	2.3		13^{11}
	2.0		$13 \\ 13$
	2.4		$15 \\ 15$
	2.1		$15 \\ 15$
			$19 \\ 19$
	2.5		$19 \\ 19$
3			25
	3.1	8	25
	3.2	8	27
	3.3	0	27
	3.4	Seismometers	27
Re	efere	ces	27
	— 1		•
Α	Tab		28
			28
			33 94
		Equipment on towers	
	A.4	Location of ground based equipment	54
В	Con	0	58
	B.1		58
		B.1.1 Worksheet 1: Introduction	58
			58
		B.1.3 Worksheet 3: Tower location	59
		B.1.4 Worksheet 4: Pending questions	61
		B.1.5 Worksheets 5, 6, 7 and 8: LaTeX \ldots \ldots \ldots	61
	B.2		61
		B.2.1 Worksheet 1: Introduction	62
		B.2.2 Worksheet 2: Totals Summary	62
		•	62
			62
			63
		B.2.6 Worksheet 6: NetCDF Towers Summary	63

	B.2.7	Worksheets 7 to 49: Tower $@@@##$ 6	3
B.3	Groun	d Based Equipment	4
	B.3.1	Worksheet 1: Remote sensors	5
	B.3.2	Worksheet 2: in WindsP	6
	B.3.3	Worksheet 3: Compare	6
	B.3.4	Worksheet 4: LaTeX RemoteSensor IOP 6	6
	B.3.5	Worksheet 5: LaTeX RemoteSensor	6
	B.3.6	Worksheet 6: Tyler-Rebecca	6
	B.3.7	Worksheet 7: Count Equipment	6
	B.3.8	Worksheet 8: Contacts	6

List of Figures

1	Perdigão layout	2
2	Tower with sonics	8
3	Measurement points on boom and sonic	8
4	Boom direction and wind vectors	9
5	Triangle in circle	13
6	Anemometer by brand and owner	16
7	Tower based sensor by type	16
8	Tower based sensor by brand	17

List of Tables

1	UTM parameters for Portugal	3
2	Tower numbers and identification	6
3	Average and maximum of standard deviation of easting, northing, direction	
	and elevation	9
4	Sonics anemometers: manufacturers and models and height offset	12
5	Sonics anemometers: owners	12
6	Characteristics of Samortecnica towers	13
7	Sensors on towers	17
8	Ground based equipment	26
9	Location of sonic anemometers	28
10	Tower location	33
11	Towers and equipment ?Incomplete?	35
12	Location of ground based equipment	55

Abstract

This is the document on the location of the scientific equipment deployed in Perdigão-2017, comprising a total of 55^4 ground based instruments and many more sensors (344^5) installed at or close to the meteorological towers⁶, 50 in total. This document, the information in Perdigão web site and two companion Excel workbooks are the complete set of references on the experiment layout. To to the best of our knowledge, the information in these three documents is complete and accurate, with no need for consulting any other source.

This is version 1, identified by a watermark along the diagonal; any future version and changes will be referenced relatively to this version.

⁴See Table 8 in page 26. These footnotes will stay, until a couple of open questions is answered.
⁵See section 2.4, Table 7 in page 17.
⁶See Table 2, page 6.

1 Introduction

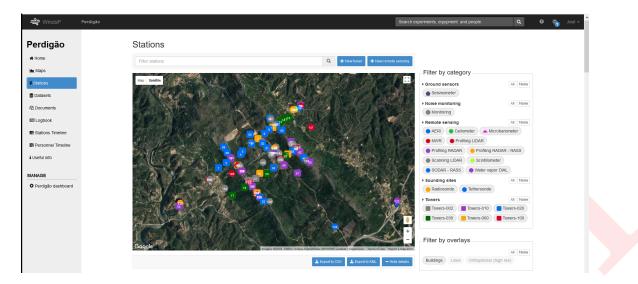


Figure 1: Perdigão layout, as available at http://perdigao.fe.up.pt under Stations

In the terminology of Perdigão Webpage⁷ the equipment (called *Stations*) is organized under five categories:

- *Towers*, which includes the lattice towers and the corresponding scientific equipment;
- Sounding sites;
- Remote sensing;
- Noise monitoring; and
- Ground sensors.

There are 105 stations: 50 meteorological towers, numbered from 1 to 55 (Table 2), and 55ground based equipment, station numbers between 101 and 218 (Table A.4).

The location was determined by measurements or derived from the measured location of nearby equipment. In all cases the accuracy was the highest achievable with the current technology and accurate enough to the foreseeable use of the experimental data.

1.1 The purpose of this document

This document is the main reference on the location of the scientific equipment used in Perdigão-2017. For instance, all data in the previous report by Menke and Mann [2017], laser survey of the sonic anemometers on the meteorological masts, was thoroughly checked, updated and completed with the missing locations of some anemometers and all the remaining equipment in Perdigão.

 $^{^7\}mathrm{Originated}$ from WindsP

1.1.1 Corrections and future versions

The information is in three documents

- 1. the present report;
- 2. the Perdigao webpage (http://perdigao.fe.up.pt);
- 3. the Excel workbooks Towers and Sonics, Remote Sensors and NETCDF Towers.

The information in the present document is complete and accurate⁸. To show differences to future versions, a watermark on all pages identifies the document version and future versions will always identify the differences to previous versions.

1.2 Conventions and nomenclature

1.2.1 Geodesic system PT-TM06/ETRS89 - European Terrestrial Reference System 1989

The geodesic system used throughout the document is the European Terrestrial Reference System 1989. The parameters of the Universal Transversal Mercator for Portugal mainland since 2006 are as in Table 1. Information prior to 2006 is obsolete.

Spheroid GRS80	Semi-major axis: $a = 6378137 \text{ m}$
	Semi-minor axis: $b = 6356752.314140 \text{ m}$
	Inverse flattening: $f = 298.257 222 101$
Map projection:	transverse Mercator
Origin (Latitude)	39°40′5.73″ N
Origin (Longitude)	8°7′59.19″ W

Table 1: Parameters of the Universal Transversal Mercator for Portugal

Source: PT-TM06/ETRS89 - European Terrestrial Reference System 1989 (In Portuguese)

1.2.2 Height, altitude and elevation

In the literature, *height* and *altitude* often refer, but not always to terrain height above the mean sea level, and can be confusing. For the sake of clarity, here we will use *terrain elevation* or simply *elevation* when referring to terrain height with respect to the mean sea level; i.e., elevation stands as a synonymous for terrain height above mean sea level. Height, unless stated otherwise, will be the height above the ground level.

1.2.3 A note on accuracy, error, precision and uncertainty

The geographical location of the equipment was assessed by a large variety of instruments, including smartphones. The Leica system owned by DTU was the most accurate

 $^{^{8}}$ This not true about version 1, all authors must have the opportunity to read the document carefully and complete some information still missing.

equipment available and was extensively used for measuring the location of almost all the scientific equipment. The accuracy of the Leica system posed a series of new questions that are addressed in the present document and call for decisions, to make the location data both final and valuable for years to come. For instance:

- 1. Leica system enables the determination of the geographical location to an accuracy of 2 mm; however, at the present it is hard to envisage the need for such a high accuracy in future usage of the Perdigão data.
- 2. The uncertainty of latitude and longitude is lower than terrain elevation uncertainty.
- 3. In general, latitude and longitude are given with two decimal figures (1 cm) and terrain elevation with one decimal (1 dm) figure.

Concerning the words accuracy, error, precision or uncertainty, their meaning is as established by for Standardization and Commission [2008].

1.2.4 Worksheet and workbook

A *worksheet* is a single spreadsheet, i.e. cells organized by rows and columns. A *workbook* is a file that contains one or more worksheets, accessed via separate tabs on the bottom of the *workbook* window. A *worksheet* begins with row number 1 and column A. Each cell can contain a number, text or formula. A cell can also reference another cell in the same or another *worksheet*, which can be in the same *workbook* or a different *workbook*.

1.3 Contents

The document is organized in 3 sections and two appendices, A and B. After the introductory section 1, here coming to the end, section 2 is concerned with the tower based equipment, whereas section 3 deals with all the remaining, ground based equipment. The appendices are on the location of the equipment (Tables in Appendix A) and on the contents of the Excel workbooks, *Towers and Sonics, Remote Sensors* and *NETCDF Towers* (in Appendix B).

2 Tower based equipment

This section, on the meteorological towers and the measuring equipment installed on or close to the towers, is organized into 4 subsections. First (subsection 2.1) the conventions used to name the towers are introduced. Subsection 2.2 is concerned with the location of the sonic anemometers. Subsection 2.3 deals with the tower location and how it was determined from the location of the sonic anemometers. The inventory and location of all the remaining equipment on the towers was found mostly by interpretation of the NetCDF files associated to each meteorological tower, and is the subject of subsection 2.4.

2.1 Towers identification

Towers were identified by three alternative conventions (Table 2):

- Perdigao: Numbering, from 1 to 55; however, towers 19, 30, 31, 44 and 48 were not erected or instrumented and there was a total of 50 towers.
 - DTU: Composed word, @@@@_##, where the letters @@@@ (up to 4) identify the tower location and the two digits ## are the tower number per tower location:
 - trnw: transect North-West, numbered from 1 until 16;
 - trse: transect South-East, numbered from 1 until 13 (trse_03, trse_14 and trse_15 were not installed);
 - risw: ridge South-West, numbered from 1 until 8;
 - rine: ridge North-East, numbered from 1 until 7 (rine_05 was not installed);
 - vall: valley, numbered from 1 until 7 (vall_02 was not installed).
 - NCAR: Composed word, @@@##, where the letters @@@ (up to 3) identify the tower location and the two digits ## are the tower number per tower location
 - tnw: transect North-West, numbered from 1 until 16;
 - tse: transect South-East, numbered from 1 until 13 (tse03, tse14 and tse15 were not installed);
 - rsw: ridge South-West, numbered from 1 until 8;
 - rne: ridge North-East, numbered from 1 until 7 (rne05 was not installed);
 - v: valley, numbered from 1 until 7 (v02 was not installed).

Table 2 shows the equivalence between the three conventions. Two towers (Extreme_SW and Extreme_NE), located outside the main perimeter of the site, were named without complying with any of these three conventions.

The total number of towers was 50: 3 (100 m height), 6 (60 m), 8 (30 m), 20 (20 m), 12 (10 m) and 1 (2m).

		Codes				
#	Perdigao	NCAR	DTU	Location	Height	Manag
1	1	tnw01	trnw_01	transect northwest	20	NCAR
2	2	tnw02	trnw_02	transect northwest	20	NCAR
3	3	tnw03	trnw_03	transect northwest	10	NCAR
4	4	tnw04	trnw_04	transect northwest	20	NCAR
5	5	tnw05	trnw_05	transect northwest	20	NCAR
6	6	tnw06	trnw_06	transect northwest	20	NCAR
7	7	tnw07	trnw_07	transect northwest	60	NCAR/DTU
8	8	tnw08	trnw_08	transect northwest	20	NCAR
9	9	tnw09	trnw_09	transect northwest	10	NCAR
10	10	tnw10	trnw_10	transect northwest	60	NCAR/DTU
11	11	tnw11	trnw_11	transect northwest	20	NCAR
12	12	tnw12	trnw_12	transect northwest	30	ARL
13	13	tnw13	trnw_13	transect northwest	30	ARL
14	14	tnw14	trnw_14	transect northwest	30	ARL
15	15	tnw15	trnw_15	transect northwest	30	ARL
16	16	tnw16	trnw_16	transect northwest	30	ARL
17	17	tse01	trse_01	transect southeast	30	NCAR
18	18	tse02	trse_02	transect southeast	30	NCAR
	19			Not installed		_
19	20	tse04	trse_04	transect southeast	100	NCAR/DTU
20	21	tse05	trse_05	transect southeast	2	NCAR/DTU
21	22	tse06	trse_06	transect southeast	60	NCAR/DTU
22	23	tse07	trse_07	transect southeast	20	NCAR
23	24	tse08	trse_08	transect southeast	20	NCAR
24	25	tse09	trse_09	transect southeast	100	NCAR/DTU
25	26	tse10	trse_10	transect southeast	30	NCAR
26	27	tse11	trse_11	transect southeast	60	NCAR/DTU
27	28	tse12	trse_12	transect southeast	20	NCAR
$\frac{-1}{28}$	29	tse13	trse_13	transect southeast	100	NCAR/DTU
_0	30	_		Not installed		
	31		_	Not installed		
29	32	rsw01	risw_01	ridge southwest	20	NCAR
$\frac{20}{30}$	33	rsw02	risw_02	ridge southwest	20 20	NCAR
31	34	rsw02	risw_02	ridge southwest	60	NCAR/DTU
32	35	rsw04	risw_04	ridge southwest	10	NCAR
33	36	rsw05	risw_05	 ridge southwest 	10	NCAR
34	37	rsw06	risw_06	ridge southwest	60	NCAR/DTU
35	38	rsw07	risw_00	ridge southwest	20	NCAR
36	39	rsw08	risw_07	ridge southwest	20 20	NCAR
$\frac{30}{37}$	40	rne01	rine_01	ridge northeast	20 10	NCAR
$\frac{37}{38}$	40 41	rne01	rine_01 rine_02	ridge northeast	10 20	NCAR
$\frac{38}{39}$	$\frac{41}{42}$	rne02	rine_02	ridge northeast	20 10	NCAR
$\frac{59}{40}$	$\frac{42}{43}$	rne03 rne04		-	10	NCAR
40	45 44	111EO4	rine_04	ridge northeast Not installed	10	INCAR
/1	$\frac{44}{45}$		ring Of		$\overline{20}$	NCAR
$\begin{array}{c} 41 \\ 42 \end{array}$	$\frac{45}{46}$	rne06 rne07	rine_06	ridge northeast		NCAR NCAR
$\frac{42}{43}$			rine_07	ridge northeast	20 10	
40	47	v01	vall_01	valley	10	NCAR

Table 2: Tower numbers and identification

		Codes				
#	Perdigao	NCAR	DTU	Location	Height	Manag
	48			Not installed		
44	49	v03	vall_03	valley	10	NCAR
45	50	v04	vall_04	valley	10	NCAR
46	51	v05	vall_05	valley	20	NCAR
47	52	v06	vall_06	valley	20	NCAR
48	53	v07	vall_07	valley	20	NCAR
49	54	Extreme_SW	Extreme_SW	southwest	10	ARL
50	55	Extreme_NE	Extreme_NE	north east	10	ARL
Sour	Source: LaTeX NETCDF Towers/Latex TowerName 30-04-2018 19:02					

continuation from the previous page

Note on future tower identification

Please note the following:

- 1. These three conventions were created independently from each other and are included here for completeness and allow crossing information from different sources.
- 2. It is not intended that they all three be used in the future; we strongly recommend that the DTU convention be dropped in favour of NCAR, which using the same *rationale* (location and tower number per location) identifies the same tower with less digits.
- 3. It is recommended that in every future publication a combination of both Perdigao and NCAR nomenclature be used, where, for instance tower 20 is identified as tower 20/tse04. It should not be identified as tower 19, because it was the 19th tower installed, or for instance, as tower number 4, because it was tower number 4 of those 6 used in that publication.
- 4. Tower identification should prevail forever and when faced with different publications, the reader will know that the authors are referring to the same tower. Data files are identified based on either nomenclature.

2.2 Sonic anemometers

The sonic anemometers (installed at the end of booms, attached to the lattice tower, Fig. 2) had their position determined by measuring four locations: two on the boom and two on the anemometer, Fig. 3. The measuring equipment was a Leica system, comprised of the following units: (1) Leica MultiStation MS50, (2) Leica Viva GS14 - GNSS Smart Antenna, (3) Leica CRT16 Bluetooth Cap and (4) Leica GRZ121 360 Reflector PRO Surveying Prism. Based on these measurements, the following information (available in worksheet Anemometers, see section B.1.2) was determined for every anemometer:

- angle α (in degrees), the boom alignment between the boom and the geographical north, measured clockwise;
- tilt, the angle of the boom in degrees towards the horizontal plane;
- easting and northing, the eastward and the northward-measured distances; and

- two different heights (elevations)⁹ above the mean sea level,
 - $-z_{boom}$, the elevation of the boom centre line;
 - $-z_0(\text{int.})$, the terrain elevation, determined by interpolation from the terrain lidar scanning in 2015; and
 - $-z_0$ (mea.), the terrain elevation on top of the tower concrete foundation, as measured by the Leica system and included as reference.

Figure 2: Tower (N. 41/riNE02) with sonics (RMY81000) mounted vertically at the end of the booms.

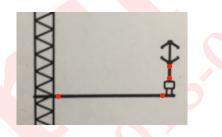


Figure 3: Measurement points on boom and sonic (Ref Menke and Mann [2017])

2.2.1 Measurements uncertainty

According to Menke and Mann [2017], the location (easting, northing and elevation) of every single sonic anemometer was measured to the precision of 1 cm or even 2 mm. However, reporting the positioning of every anemometer to the accuracy achieved by the Leica system is needless, because higher deviations did certainly occur during the course of the measurements by temperature changes and stresses acting on the metal structure (guy-wires and lattice tower). The accuracy achieved by the measuring system cannot be matched when it comes to construction and erection of the lattice towers or installation of the sonic anemometers.

 $^{^{9}}$ See section 1.2.2 on height, altitude and elevation.

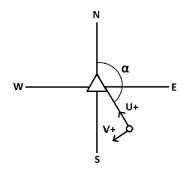


Figure 4: Boom direction and wind vectors (Ref Menke and Mann [2017])

In an attempt to assess the uncertainty of the measurement procedures, the standard deviation of easting, northing, elevation and boom direction of all sonic anemometers on the same mast and direction were determined (worksheet *Tower location* in workbook *Towers and sonics*), with the summary of those results in Table 3. The average of the standard deviation of both easting and northing was of an order of 10^{-1} m, and the average of standard deviation of direction and elevation were 1.25 degree and 0.03 m; whereas the maxima of each variable could be up about $5 \times$ the average. These values are an indicator of the good quality of the work performed by Samortecnica, during the construction and erection of the towers, and by the technicians from DTU, NCAR and INEGI during the installation of the equipment. Otherwise, it would have not been possible to achieve deviations of only a few dm between sensors along distances up to 100 m above the ground.

	Sensor Locatio	on		
	Easting	Northing	Direction	Elevation (asl)
Average	0,10	0,06	1,25	0,03
Maximum	0,44	0,38	5,23	0,26

Table 3: Average and maximum of standard deviation of easting, northing, direction and elevation

The coordinates of the sonic anemometers as measured appear in worksheet entitled *Anemometers* (section B.1.2). The coordinates in worksheets entitled *Tower location* (section B.1.3) are copies from worksheet *Anemometers* ((linked by formulae). Any future change of the measured values, if necessary, should be in this worksheet.

2.2.2 Handling the missing data

The coordinates of 10 out of a total of 185 sonics were not measured. Two situations were encountered:

- Situation 1: Easting and northing could not be determined. However, z_{boom} , angle and tilt were measured, and the solution was to assume that easting and northing were identical to the anemometer immediately above. This was the case of the following sonics at 2 m above the ground, where, due to the vegetation there was no clearance for operation of the Leica system:
 - 1. TW03 2M / tnw03.2m (blue cells for tower 03, line 11)

- 2. TW04 2M / tnw04.2m (blue cells for tower 04, line 14)
- 3. TW06 2M / tnw06.2m (blue cells for tower 06, line 30)
- 4. TW07 2M / tnw07.2m does not exist (blue cells for tower 07, line 38)
- 5. Tower 50, for the anemometer placed 2 meters above ground. Estimate coordinates for the sonic can be found in line 226 of Worksheet *Tower location*.
- 6. TW51 2M / v05.2m (blue cells for tower 51, line 229)
- 7. TW53 2M / v07.2m (blue cells for tower 53, line 237)

Apart from these 7 sonics, there was no easting and northing also in the case of sonic TW28 10M tse12.10m (orange cells for tower 28, line 158), and easting and northing were from the tower location, derived from the location of the anemometer above (line 159).

Situation 2: no measurements.

This only applied to an emometer TW07 12M / tnw07.12m (line 43) and here the height above the ground was assumed equal to 12 m, the nominal value, and all others variables were taken as the average value of the remaining an emometers on the tower.

2.2.3 Location of 185 sonics

QUESTIONS ON LOCATION OF SONIC ANEMOMETERS Questions

- 1. Every single sonic anemometer should have its location exactly as measured, including:
 - (a) Easting, northing, height above the ground, direction and tilting; or

height of the sonic, h_s above the ground was determined by:

(b) Easting, northing, height above the ground and direction. Tilting must be ignored, because it was very low and was measured only to ascertain that the boom was on a horizontal plane and the sonic anemometer was aligned. The

$$h_s = z_{boom} + sonic_{offset} - z_t(int.) \tag{1}$$

where $sonic_{offset}$, in Table 4, is the vertical distance between the boom and the centre of the sonic sensors. $z_t(mea.)$ the terrain height derived from the terrain scanning campaign in 2015 was included here only as reference. The terrain elevation measured by the Leica system, because *is situ*, was considered more accurate.

Table 9, in Appendix A.1, shows the location for all 185 sonic anemometers.

- 2. There is no need to know the exact location of every single sonic anemometer, and easting, northing, height above the ground and direction should be treated as follows:
 - (a) The easting and northing of all sonic anemometers must be averaged, yielding one single location for all sonic anemometers at the same tower; i.e. a vertical line going through the centre of all sonic anemometers.

$$E_{st_i} = \frac{1}{N_i} \sum_{k=1}^{N_i} E_k \tag{2}$$

$$N_{st_i} = \frac{1}{N_i} \sum_{k=1}^{N_i} N_k \tag{3}$$

where N_i is the number of anemometers on tower i.

- (b) Only the height above the ground and the direction of each anemometer must be preserved.
- 3. Which location should be used as the tower location?
 - (a) See section 2.3.1.

Tables 4 and 5 show the distribution of 185 sonic anemometers. by manufacturers and ownership, whereas the location as measured by the Leica system, can be found in Table 9. $h_s(agl)$ is the actual height of the sonic (geometric centre of the sonic sensors) above the ground level, in centimetre. This is a value of no consequence on the identification of the instrument and the corresponding data files, where the instrument is identified by its nominal height, in metre.

Table 4: Sonics anemometers: manufacturers and models and height offset

Manufacturer/model	Height offset (m)	Quantity
CSAT3	0,080	11
CSAT3A	0,000	24
Gill WM Pro	0,669	51
GillWM	0,819	40
METEK	$0,\!660$	15
RMY81000	0,520	42
?		2
Total		185

Source: Towers and Sonics/Count Sonics

05-02-2018 13:12

Table 9. Somes anometers. Owners	Table 5:	Sonics	anemometers:	owners
----------------------------------	----------	--------	--------------	--------

Owner	Quantity
NCAR	31
OU	3
??	58
ARL	63
DTU	14
UND	16
UPORTO	10

Source: Towers and Sonics/Count Sonics 05-02-2018 13:12

185

Total

2.3 Towers

There were two types of towers: the ARL towers and those supplied by Samortecnica with heights from 10 up to 100 m (Table 6). The latter were all lattice structures constructed in an equilateral triangular pattern. Tower 21 (2 m height) was an exception; it was a final attempt to have some measurement equipment at a location thought to be important.

Tower height (m)	Triangular pattern							
	side a_i (cm)	height b_i (cm)	height b_i^* (cm)	radius r_i (cm)				
100	60	17.32	51.96	34,64				
60	55	15.87	47.61	31,75				
30, 20, 10	45	12.99	38.97	$25,\!98$				

 Table 6: Characteristics of Samortecnica towers

Because there was no measurement of the tower location and this was required as the reference location of other instruments also installed at or near the tower, the tower location was determined from the location of the sonic anemometers as described in the following section.

2.3.1 Tower location

The sonics were installed at the end of a boom (attached to one side of the lattice tower, Fig. 2), at a distance ℓ equal to 2 m, measured between the closest vertex of the equilateral triangle and the vertical axis (centre) of the sensors in the sonic anemometer (Fig. 5). The boom direction with respect to the geographical North, is given by α , E and N are the easting and northing, and subscripts t and s refer to tower and sensor.

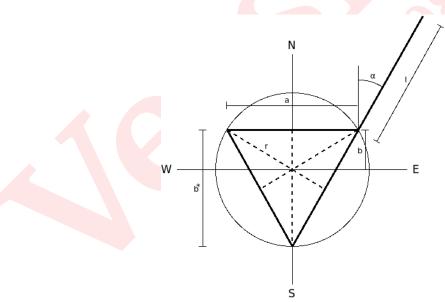


Figure 5: Triangle in circle

Because the area of the large equilateral triangle (side a) is identical to the area of the

three (or six) small triangles within

$$b^* = 3b. (4)$$

Also, in the case of the large triangle,

$$(b^*)^2 + (a/2)^2 = a^2 , (5)$$

which, after substitution in (4) yields

$$b = a/\sqrt{12} \tag{6}$$

the distance (b) between the boom and the centre of the tower, as a function of the triangle side. The radius of the circle, r, is equal to $r = a/\sqrt{3}$.

The average location of all sonics on a tower is:

$$E_{st_{i}} = \frac{1}{N_{i}} \sum_{k=1}^{N_{i}} E_{k}$$

$$N_{st_{i}} = \frac{1}{N_{i}} \sum_{k=1}^{N_{i}} N_{k}$$
(7)
(8)

and the centre of the circle (the tower centre) is located at

$$E_t = \frac{1}{N_i} \sum_{k=1}^{N_i} \left[E_k \underbrace{-(\ell + a_i/2)\sin(\alpha_k)}_{E_1} - \underbrace{b_i \cos(\alpha_k)}_{E_2} \right]$$
(9)

$$N_{t} = \frac{1}{N_{i}} \sum_{k=1}^{N_{i}} \left[N_{k} \underbrace{-(\ell + a_{i}/2)\cos(\alpha_{k})}_{N_{1}} + \underbrace{b_{i}\sin(\alpha_{k})}_{N_{2}} \right]$$
(10)

where N_i is the number of sonic anemometers on tower i, E_k and N_k are the easting and northing of anemometer k and α_k is the boom direction, and a_i and b_i depend on the tower size (Table 6).

QUESTIONS ON TOWERS' REFERENCE LOCATION Questions

- Which location should be used as the tower location?
 - 1. the location 2a in the previous box, i.e. the vertical axis of all sonics (equations (7) and (8))? or
 - 2. the vertical axis going through the centre of the equilateral triangle of the lattice tower pattern (equations (9) and (10))?

ANSWER: See next box.

DECISION ON TOWER LOCATION

The reference location of the tower should be the location of the vertical axis going through the centre of the sonic anemometers, instead of the geometrical centre of the lattice tower, because:

- 1. the location of the vertical axis going through the centre of the sonic anemometers was determined with a lower uncertainty than the geometric centre of the actual (lattice) tower;
- 2. this is the location that really matters (if the objective is an accurate location of the sonics);
- 3. this not only should be the geographic location of the sonics but of all the sensors on the tower.

Table 10 shows the location of all towers (geometrical centre of the lattice structure, called *Lattice tower*) and the location of the vertical axis going through the centre of

sensors (called *Sonic tower*). Both lattice towers and sonic towers share the same terrain elevation and differ on the actual location (i.e. Easting and Northing).

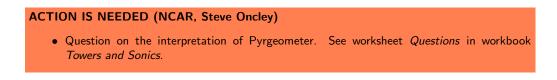
In the case of towers where not all booms were on the same direction, towers were split into a and b, which was the case of towers 2, 4, 5, 14, 23, 28 and 51. In this case, the distance between towers (Dist stow) is also shown. This distance is about 4 m long in the case of the booms were opposed to each other (180° apart), which was the case of towers 2, 4, 5, 23, 28 and 51. In summary, there was a total of 50 lattice towers or 56 sonic towers.

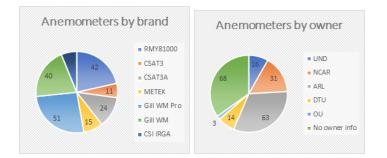
2.4 Other tower based sensors

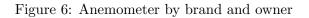
Because it was the most reliable source on the equipment actually installed and operating at every tower, the number and type of sensors was determined mainly by post-processing the meta-data information in XML, after editing the contents of the NetCDF files of every tower¹⁰. However, the information here is not complete, because the ARL towers (i.e., towers 12, 13, 14, 15 and 16, and the towers number 54 and 55, named Extreme_SW and and Extreme_NW) had an independent data acquisition system, and a list of questions need to be answered yet.

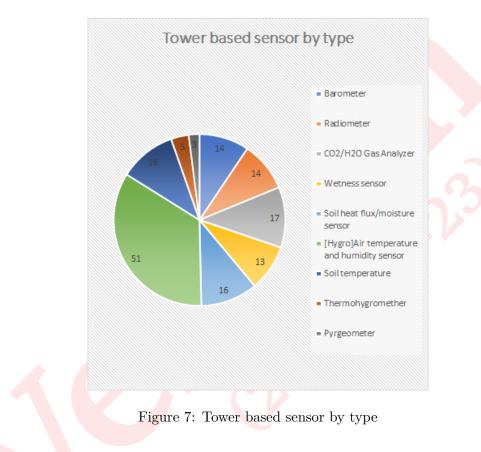
The results in this section can be found in the Excel workbook, entitled *NetCDF Towers* (Appendix B.2). Table 11, on page 35, contains the information on every tower.

2.4.1 The equipment on towers with the NCAR data acquisition system


In total, there were at least 344 sensors installed on these 48 towers (Table 7), distributed as follows:


- Sonic anemometers, 195 (this number differs from 185 in section 2.2 and Table 9)
- Barometer, 14
- Radiometer, 14
- Hygrothermometer, 51
- Wetness Sensor, 13
- CO2/H2O Gas Analyzer, 17
- Soil Heat Flux/Moisture Sensor, 15
- Soil temperature, 1
- Thermohygrometer, 5
- Pyrgeometer. See worksheet *Questions* ??


ACTION IS NEEDED


• These numbers are not final, until the list of equipment on towers 12, 13, 14, 15, 16, 54 and 55 is known (see section 2.4.2) and meaning of some variables in the NetCDF files is clarified.

¹⁰Later, it was found that a record of the equipment installed on every tower was maintained by Steve Oncley (available at https://wiki.ucar.edu/display/perdigao/Tower+Sensor+Serial+Numbers), see page 19

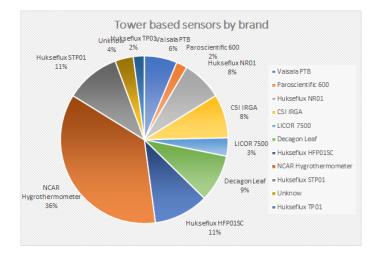
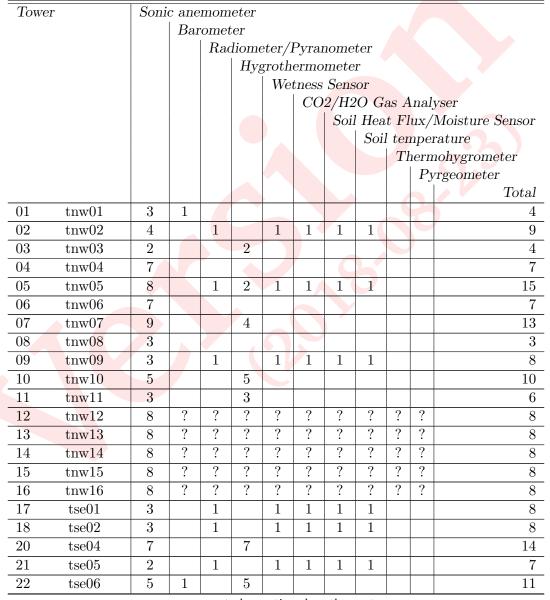



Figure 8: Tower based sensor by brand

Table 7: Sensors on towers

Tow	ver	Sonic anemometer										
			Bar	omet								
				Rac	liome	eter/i	Pyrai	nome	ter			
					Hyg	groth	ermo	mete	r			
				Wetness Sensor								
				CO2/H2O Gas Analyser								yser
				Soil Heat Flux/Moiste							Moisture Sensor	
									Soil	l ter	npe	rature
										T	hern	nohygrometer
											Py	vrgeometer
												Total
23	tse07	3	1	1		1	1	1	1			9
24	tse08	2	1									3
25	tse09	7			7							14
26	tse10	2	1									3
27	tse11	5			4							9
28	tse12	3		1			1	1	1			7
29	tse13	7			7							14
32	rsw01	2	1									3
33	rsw02	2	1									3
34	rsw03	5	1		5							11
35	rsw04	1	1	1		1	1	1	1			7
36	rsw05	1	1									2
37	rsw06	5								5		10
38	rsw07	2										2
39	rsw08	2	1									3
40	rne01	2					1	1	1		1	6
41	rne02	2										2
42	rne03	1									1	1
43	rne04	1										1
45	rne06	2	1	1		1	1	1	1			8
46	rne07	3		1		1	1	1	1			8
47	v01	3	1	1			1	1	1		1	9
47	v01	3	1	1			1	1	1		1	9
49	v03	3					1					4
50	v04	2		1		1	1	1	1		1	8
51	v05	3										3
52	v06	3				1	1	1	1			7
53	v07	7	1	1		1	1	1	1			13
54	Extreme_SW	?	?	?	?	?	?	?	?	?	?	?
55	Extreme_NE	?	?	?	?	?	?	?	?	?	?	?
-	Total	195	14	14	51	13	17	16	16	5	3	344

continuation from the previous page

Source: Convert Summary To Latex/Latex Sensors Total 08-02-2018 15:17

NOTES: the difference between the total number of sonics in this table (Table 7) and Table 9 is because of the 10 IRGASON Integrated CO2 and H2O Open-Path Gas Analyzer and 3-D Sonic Anemometer that simultaneously measure three-dimensional wind speed, and absolute carbon dioxide and water vapor, air temperature, barometric pressure and sonic air temperature.

2.4.2 The equipment on the ARL towers (nos. 12, 13, 14, 15, 16, 54 and 55)

The list of equipment on the ARl towers (nos. 12, 13, 14, 15 and 16; and nos. 54 and 55) is not complete. The information of 8 sonic anemometers per tower was as in section 2.2, Table 9.

ACTION IS NEEDED (ARL, Ed Creegan)

• The list of equipment installed on ARL towers is missing.

2.5 To be completed

There are a couple of actions needed, before this list is complete:

- 1. Confirmation of sensors installed on ARL towers.
- 2. Values in Table 7 need to be compared with information on page 19, a copy of Steve's blog available at Tower Sensor Serial Numbers, Created by Steven Oncley, last modified on Mar 16, 2018.
- 3. After this is done, Table 11 can also be completed.

Tower Sensor Serial Numbers, Created by Steven Oncley, last modified on Mar 16, 2018

The following 5 pages is the information collected by Steve Oncley during the installation and later updated. This is an independent source that must be compared with the information in Table 7.

Tower Sensor Serial Numbers

Skip to end of metadata

• Created by Steven Oncley, last modified on Mar 16, 2018

Go to start of metadata

Some distance measurements at bottom of this page.

tnw01

- 20m: RMY(ARL) #1359
- 10m: RMY(ARL) #645
- 2m: PTB220 #U4110003 (B8)
- 2m: RMY(ARL) #712
- Mote #55

tnw02

- 20m: CSAT3A#2044 ; EC150#1233; EC100 #1313
- 20m: NR01 #1980
- 10m: CSAT3A#2036; EC100 #1817
- 10m: TRH #43
- 2m: RMY #004590
- 2m: TRH #117, #31
- mote #20
- soils: Tsoil#012; Qsoil#012; Gsoil#H023010(06); TP01#200592(06)

2m Metek USA-14

Mote #5, DSM # 208

tnw03

- 10m: METEK (DTU): 2007 08017/01 Teardown: 10m METEK USA-14 # 200708017/01
- 10m: TRH #124
- 2m: METEK (DTU): 2007 09007/01 #200709007/01
- 2m: TRH #1
 mote #5
- Ποτε π.

tnw04

- 20m: RMY(ARL) #4132
- 12m: RMY(ND) #2552
- 10m: RMY(ND) #4593
- 8m: RMY(ND) #4552
- 6m: RMY(ND) #4592
- 4m: RMY(ARL) #923
- 2m: RMY(ARL) #1256
 mote #NONE (not enough left!)

tnw05

- 20m: CSAT3A #2049
- 20m: EC150 #1384
- 20m: EC100 #1696
 20m: NR01 #2540
- 2011: NK01 #2340
 12m: RMY #650
- 10m: CSAT3A #2047
- 10m: EC100 # 1798
- 10m: Mote ID37
- 8m: RMY #1377
- 6m: RMY #1360
- 4m: RMY #498
- 2m: RMY #495
- Soil Mote ID07
- TSoil #009
- ECHO EC5 #001
- TP01 #200669
- Heat Flux #H023009

tnw06

- 20m: RMY #633
- 12m: RMY #1369
- 10m: RMY #1376
- 8m: RMY #1372
- 6m: RMY #635
- 4m: RMY #1338
 2m: RMY #639
- Mote #28

tnw07

- 60m: TRH#125/#58
- 60m: Gill #164808
- 40m: TRH#129
- 40m: Gill #164807
- 30m: DSM
- 30m: Gill #164805
- tnw07t; mote #32
 20m: TRH#102
- 20m: Gill #164804
- 10m: TRH#42/#64
- 10m: Gill #164803
- 2m: TRH#123
- tnw07b; mote #31

tnw08

• 20m: RMY(ND) #1294

• 10m: RMY(ND) #3984 • 2m: RMY(ND) #3410 • mote #27 tse04 tnw09 10m: CSAT3A #2035; EC150 #1392; EC100 #1693 • 10m: NR01 #2536 • 2m: RMY (ARL) #1374 • Soils: mote #15, TP #200675,HF #H943149, TS #001, OS#E10 • 10m: TRH#68 tnw10 • 2m: TRH#104, #60 • 60m: TRH#128 tse05 • 40m: TRH#23/#53 30m: DSM tnw10; mote# • 20m: TRH#118 • 10m: TRH#105 • 2m: TRH#124/#119 • mote #24 tnw11 • 20m; RMY (ARL) 4131 > 638 tse06 • 10m: RMY (ARL) 4133 > 932 • 2m: RMY (ARL) 4135 • mote #12 tse01 • 20m: TRH#1, #32 20m: CSAT3A#, EC150#, EC100# Teardown: 20m CSAT3A # 2032, EC150 # 1385, EC100 # 1690 • 20m: NR01 NR01-T2 # 2539 LW #009 tse07 • 2m: CSAT3A#, EC100# 10m CSAT3A #2045, EC100 # 1796 mote# Soil mote #30, ECHO . #003, PIC QS03, TSoil # 008 PIC TS08, HFT #H103642 PIC TP09 DSM 217 tse02 30m: CSAT3A#2037, EC150#1383, EC100 #1687 Teardown: 30m CSAT3A #2037, EC150#1383 EC100 # 1687 NR01 -T2 #2533, LW # 001 • 20m: NR01 #2533 10m CSAT3A # 2050, • 10m: CSAT3A # 2050, EC100 #1813 • mote #48 EC100 # 1813 • Mote Soil #25, TP #15, QS #08, HF#13, TS #17 Soil Mote # 25, TP01 # 200668 PIC TP07, ECHO # 027 PIC QS08, HFT 3.1 # H103634 PIC HF13, tse09 TSoil # 017 PIC TS17 DSM 218

tse03 (skipped in numbering, doesn't exist)

- 100m: TRH#24, #111
- 80m; TRH#31, #116
- 70m: tse04t; Mote #17
- 60m: TRH#108, #125
- 40m: TRH#47, #24, #110
- 20m: TRH#60, #104

- 2m tse04b; Mote #57
- 2m: CSAT3A#1006; EC150 #1386; EC100 #1706
- 2m: NR01#1424
- 2m: nanobarometer #123998
- soils: Tsoil #TS09; Qsoil #QS13; Gsoil #HF08; TP01 #TP04
- 60m: TRH#8/#29
- 40m: TRH#100
- 30m: DSM tse06; mote #60
- 10m: TRH#43, #115
- 2m: TRH#67, #23; nano #123996
- 20m: CSAT3A #P1004/EC100 #1700 #1702/EC150 #1387 #1389
- 20?m: nr01 #1980; wetness
- 10m: CSAT3 #1550 (OU), since none of 3x NCAR CSAT3's worked!
- 2m: nano #123997
- Soil: mote#51, TP02, HF16, TS11, QS17, since TS12 was bad

tse08 (USB2 didn't work in 422 mode)

- 20m: METEK #0102122234
- 10m: METEK #2007 19011/01
- 2m: nano #122850
- 100m: TRH#112

- 80m: TRH#117/#126
- 70m: DSM tse09t: mote# • 60m: TRH#41
- 40m: TRH#63
- 20m: TRH#21
- 10m: TRH#122
- 2m: TRH#103
- DSM tse09b; mote#

tse10

- 30m: METEK #0102 12 2235
- 10m: METEK #2007 09006/01
- 2m: PTB220 #NCAR0003 (B3)
- mote #53

tse11

- 60m: TRH#121
- 40m: TRH#110/#25
- 30m: DSM tse11; mote#
- 20m: TRH#116/#42
- 10m: TRH#113
- 2m: TRH#120/#24

tse12 (needs soil installed, cables connected to DSM and dressed)

- 20m: EC150#1390, EC100#1704, CSAT3A#2043, NR01#2534
- 10m: CSAT3[OU]#1552
- Soil: mote#23, TP12, HF03, TS14, QS02

tse13

- 100m: TRH#111, #56
- 80m: TRH#33, #44
- 70m: DSM tse13t; mote#
- 60m: TRH#127, #17
- 40m: TRH#55
- 20m: TRH#3
- 10m: TRH#107
- 2m: TRH#119, #106
- DSM tse13b; mote#

tse14 (never instrumented)

tse15 (never instrumented)

rsw01

• 20m: METEK#010212 236

- 10m: METEK#2007 08015/01
- 2m: PTB220#U4110004 (B9)
- mote#19

rsw02

- 20m: RMY#1368 (had spikes in ops testing, but seemed okay out of the box) Teardown: 20m RMY #1257
- 10m: RMY#499 (had problems receiving commands in ops 10m RMY #00499 testing)
- 2m: Setra#6919221 (was labeled rsw03?, but rain washed ٠ off) 2m Pressure # 6919221
- mote#12 Mote # 44, DSM # 257(RSW02X), DSM (w/ Analog input) CPU 000092 (no number on box)

rsw03

- 60m: TRH#48
- 40m: TRH#51
- 30m: DSM rsw03; mote#
- 20m: TRH#56, #33
- 10m: TRH#126, #08
- 2m: TRH#25, #108 2m: Setra#6919220 (labeled rsw02)

rsw04

- 10m: CSAT3A #P1008/EC100 #1816; Li7500 #0813
- 2m: Setra #6919218
- Rad: mote#47, Rswin#940181, Rswout#040740, Rlwin#030675, Rlwout#970379
- Soil: mote#, TP16, HF19, TS03, QS13

rsw05

- 10m: METEK (DTU) #0102122233 Teardown: 10m Metek USA-14 #0102122233
- 2m: Setra #6919219
- 2m Pressure #6919219 Mote #6, DSM
- mote #6 #22 FLUX ARRAY (siesmometer) #5007328 IICLOCK - 130 CLOCK 4192

rsw06

.

- 60m: TRH#40
- 40m: TRH#46
- 30m: DSM rsw06; mote# .
- 20m: TRH#65, #31, #15 .
- 10m: TRH#5
- 2m: TRH#109

rsw07

- 5: CSAT3A #1244; EC100 #1823
- 10m: CSAT3 #1121
- mote #11

rsw08

- 20m: METEK#
- 10m: METEK#
- 2m: PTB220#S0610002 (B5)
- mote #

rne01

- 10m: EC150#1807, EC100#1799, CSAT3A#1007
- Rad: mote#43, Rswin#970380, Rswout#970377, Rlwin#100225, Rlwout#100226
- Soil: mote#22, TP17, HF18, TS06, QS05

rne02

- 20m: RMY#1354 (ARL)
- 10m: RMY#725 (ARL)
- mote#29

rne03

- 10m: EC100#1807, CSAT3A#P1005
- mote#33

rne04

- 10m: RMY(OU) #4130
- Mote #10

rne05 (won't be installed)

rne06

- 20m: CSAT3A #2033; EC100 #1821; Li7500 #1166
- 20m: NR01 #2537
- 10m: CSAT3 #1120
- Soil: mote#38, TP#, HF#H993563, TS#007, QS#E015

rne07

- 20m: CSAT3A #1009; EC150 #1388; EC100 #1701
- 20m: NR01 #2538
- 10m: CSAT3A #2046; EC100 #1818

• Soil: mote#18, TP21, HF04, TS02, QS04

v01

- 10m: EC100 #1696, EC150 #1386, CSAT3A #2031
- 10m: NR01 #2451
- 2m: CSAT3 #1124
- 2m: PTB220 #S0610003 (B6)
- Mote Soil #42, TP18, QS19, TS16, HF14

v02 (won't be installed)

v03

- 10m: CSAT3A #1003, EC150 #1433, EC100 #1810
- 2m: CSAT3A #2051, EC100 #1800
- Mote #41

v04

- 10m: CSAT3A #1001; EC100 #1815
- 10m: LiCor #1167
- 2m: CSAT3 #1550
- Rad: mote #16, Rsw.in #970378; Rlw.in #050824; Rsw.out #030676; Rlw.out #940186
- Soil: mote #52, TP14, HF05, TS13, QS07

v05

- 2m: METEK #2005 05007/01
- 10m: METEK #2007 08011/01
- 20m: METEK #2007 09004/01
- Mote # 34

v06

- 20m: CSAT3A #2048, EC100 #1822
- 20m: LiCor #1164
- 20m: NR01 # 1979
- 10m: CSAT3 #1119
- 2m: CSAT3 #1123
- Soil: mote #58, TP03, HF02, TS15, QS16

v07b

- 12m: RMY #646
- 8m: RMY #1330
- 6m: RMY #726
- 4m: RMY #1353
- Soil: mote #50, TP13, TS20, QS18, HF12

• 2m: PTB220 #491125 (B10)

• 2m: CSAT3(OU) #1553

v07t

- 20m: Li7500 #1163
- 20m: NR01 #2535
- 10m: CSAT3 #1123
- Mote #49

(all should have holes taped or puttyed)

Initially, all RMY and METEK set with "north" pointing along boom away from tower, so "north" is approximately SE, but this changed later.

Distance from center of boom to vertical center of array (measured in ops center):

- RMY81000: 52cm
- METEK: 66cm
- CSAT3: 8cm
- CSAT3AW: 0cm

Base distances, measured on tse09, tse10, tse11:

- 100m: inside of metal "U" channel to bottom of first tower section: 12.4cm
- 60m: inside of metal "U" channel to bottom of first tower section: 4cm (different construction)
- 30m (assume for 10&20 as well): inside of metal "U" channel to bottom of first tower section: 12.4cm
- Distances to top of concrete vary from 0.6cm more (thickness of the metal U channel on top of the concrete), to 4cm less (U channel embedded down into the concrete).

3 Ground based equipment

The contents of the present section was derived from Workbook entitled *Ground Based Equipment*, in section B.3.

Data control procedures There were two sources of information on the location data of the ground based equipment:

- 1. values in PerdigA£o web site (as of May 2017), collected in different occasions; and
- 2. values measured during the last days of the IOP, available in Google Workbook *Remote Sensors*¹¹.

Coordinates of the same equipment in these two sources were compared, and if differences were higher than 10 m (stations 101, 105, 111, 112, 113, 123, 124, 131, 133, 144, 151, 152, 153, 154, 161, 162, 163, 212 and 215), the data were submitted to additional checking, including the observation of photos.

The terrain elevation that was missing (stations: 109, 115, 121, 122, 125, 132, 141, 142, 144, 156, 157, 162, 181, 182, 183, 184, 185, 191, 201, 211, 212, 213, 214 and 215) in Google Workbook *SENSOR-COORD*, with the measurements during the last days of the IOP, was obtained from the airborne terrain (laser) scanning in 2015. These values are identified by ts to distinguish from those obtained by the Leica system (m).

The contents and current state of worksheet is in Table 12.

Identification The code name in Perdigao web site is composed of two parts: part 1, a mixture of initials and digits for identification of the equipment; and part 2, with the owner (name of the participating institution) between parenthesis. The code name, category and type are major attributes, to find and easily access information on any station.

Final values

Values in Perdigão web site are final, and as in Table 12. Owners or main users of these equipments were contacted to check the final values. The name of the person, date and time of this final check is shown in the observation field of the equipment: Validated and checked by NAME on DAY/MONTH/YEAR hour:minute UTC.

The coordinates are made available to 10^{-2} m (centimetre) and 10^{-1} m (decimetre) in the case of terrain elevation.

3.1 Remote sensing

Most of the ground based equipment, Table 8, was remote sensors (39 out of 55), which included 20 scanning lidars, 8 profiling lidars, 1 profiling radar, 1 profiling radar - RASS, 2 sodar - RASS, 1 water vapour DIAL, 1 atmospheric emitted radiance interferometer, 3 microwave radiometer, 1 ceilometer and 1 scintillometer.

¹¹This workbook, used during the last days of the IOP, is now a worksheet in the Excel workbook called *Ground Based Equipment*.

	Table 8: Ground based equipment								
#	Equipment	Owner							
20	Scanning LIDAR	DTU, UO, UND, ARL, DLR,							
		WindForS, CU							
8	Profiling LIDAR	CU, UC Boulder, Enercon, Leosphere							
1	Profiling RADAR	NCAR, NCAS							
1	Profiling RADAR - RASS	NCAR							
2	SODAR - RASS	NCAR							
1	Water vapor DIAL	NCAR							
2	Radiosonde sites	NCAR, IPMA, ARL, UND							
1	Atmospheric Emitted Radiance Interferometer	OU							
3	Microwave radiometer	OU, DLR, UND							
2	Tethersonde	ARL, UC Boulder							
9	Noise monitoring terminal	Enercon, DLR							
1	Ceilometer	UND							
3	Seismometer	CU							
1	Scintillometer	ARL							
55	Total								

CU - Cornell University (USA); DLR - Institute of Atmospheric Physics (Germany); DTU - Danish Technical University (Denmark); Enercon GmbH (Germany); IPMA – Portuguese Institute for Sea and Atmosphere (Portugal); Leosphere (France); NCAR – National Center for Atmospheric Research (USA); NCAS - National Centre for Atmospheric Science (UK); OU - University of Oklahoma (USA); UC Boulder - University of Colorado (Boulder) (USA); UND - University of Notre Dame (USA); UO - University of Oldenburg (Germany); US ARL – United States Army Research Laboratories (USA); WindForS – WindForS Wind Energy Research Cluster (Germany).

3.2 Noise monitoring terminals

The noise monitoring terminals comprised four stations (181, 182, 183 and 184) from Enercon and five microphone units (211, 212, 213, 214 and 215) from DLR.

3.3 Sounding sites

Sounding sites refers to locations of both radio (two locations, 125 and 156) and the tethered sondes (two locations also, 143 and 157).

3.4 Seismometers

Three seismometers (stations 216, 217 and 217) were the last subset included in the ground based equipment.

References

- ISO International Organization for Standardization and ICE International Electrotechnical Commission. Guide 98-3. uncertainty of measurement. part 3: Guide to the expression of uncertainty in measurement (gum:1995), 2008. URL http://www.iso.org/iso/ iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45315.
- Robert Menke and Jakob Mann. Perdigão laser scanning report. Technical report, DTU, 2017.

A Tables

A.1 Location of sonics

N. Name	Easting	Northing E	$levation^1$	α	$h_s(agl)$	Model(sn)	
Tower height: 2	0 m						
$1\mathrm{tnw}01.2\mathrm{m}$	32611.27	4623.15	297.84	141.81	2.04	RMY81000	712
$2\mathrm{tnw}01.10\mathrm{m}$	32611.25	4623.15	297.84	143.92	9.94	RMY81000	645
$3\mathrm{tnw}01.20\mathrm{m}$	32611.31	4623.22	297.86	141.83	20.01	RMY81000	1359
Tower height: 2							
$4\mathrm{tnw}02.2\mathrm{m}$	32802.56	4751.43	392.38	305.19	2.03	RMY81000	4590
$5\mathrm{tnw}02.10\mathrm{m}$	32805.95	4749.07	392.38	125.09	9.92	CSAT3A	2036
$6\mathrm{tnw}02.20\mathrm{m}$	32805.95	4749.09	392.39	127.35	19.99	CSAT3A	2044
Tower height: 1	0 m						
$7\mathrm{tnw}03.2\mathrm{m}$	32917.67	4860.89	486.77	110.15	2.26	METEK 200	$7 \ 09007/01$
$8\mathrm{tnw}03.10\mathrm{m}$	32917.67	4860.89	486.77	111.75	10.24	METEK 200	$7 \ 08017/01$
Tower height: 2	0 m						
$9\mathrm{tnw}04.2\mathrm{m}$	33160.42	4962.95	395.21		2.11	RMY81000	1256
$10\mathrm{tnw}04.4\mathrm{m}$	33160.42	4962.96	395.21	126.49	4.28	RMY81000	923
$11\mathrm{tnw}04.6\mathrm{m}$	33160.45	4962.96	395.21	125.94	5.95	RMY81000	4592
$12\mathrm{tnw}04.8\mathrm{m}$	33160.44	4962.95	395.21	126.24	8.10	RMY81000	4552
$13\mathrm{tnw}04.10\mathrm{m}$	33160.43	4962.96	395 <mark>.21</mark>	125.99	10.25	RMY81000	4593
14tnw04.12m	33157.20	4965.45	395 <mark>.06</mark>	307.61	12. 52	RMY81000	2552
$15\mathrm{tnw}04.20\mathrm{m}$	33157.14	4965.30	395.07	303.38	20.31	RMY81000	4132
Tower height: 2	0 m					0.2	
$16\mathrm{tnw}05.2\mathrm{m}$	33202.15	5042.62	<mark>367.8</mark> 6	317.05	2.13	RMY81000	495
$17\mathrm{tnw}05.4\mathrm{m}$	33202.15	5042.64	367.85	316.71	4.07	RMY81000	498
$18\mathrm{tnw}05.6\mathrm{m}$	33202.17	5042.67	367.85	317.17	6.24	RMY81000	1360
$19\mathrm{tnw}05.8\mathrm{m}$	33 202.17	5042.65	<mark>3</mark> 67.85	317.52	8.33	RMY81000	1377
$20\mathrm{tnw}05.10\mathrm{m}$	33202.19	5042.52	367.88	317.26	10.20	CSAT3A	2047
$21\mathrm{tnw}05.12\mathrm{m}$	33202.17	5042.67	367.85	316.88	12.24	RMY81000	650
$22\mathrm{tnw}05.20\mathrm{m}$	33205.01	5039.67	368.54	136.67	19.53	CSAT3A	2049
Tower height: 2	0 m						
23 tnw06.2m	33 434.16	5224.15	333.85		2.36	RMY81000	639
24 tnw06.4m	33434.17	5224 <mark>.</mark> 19	333.85	116.47	4.17	RMY81000	1338
$25\mathrm{tnw}06.6\mathrm{m}$	33 434.17	5224.18	333.85	117.09	6.30	RMY81000	635
26 tnw06.8m	33434.16	5224.17	✓ 333.85	117.58	8.33	RMY81000	1372
$27\mathrm{tnw06.10m}$	33434.17	5224.14	333.85	118.07	10.40	RMY81000	4593
$28\mathrm{tnw}06.12\mathrm{m}$	33434.16	5224.12	333.86	118.23	12.29	RMY81000	2552
$29\mathrm{tnw}06.20\mathrm{m}$	33434.14	5224.11	333.86	118.64	20.35	RMY81000	4132
Tower height: 6	0 m						
$30\mathrm{tnw}07.4\mathrm{m}$	33587.28	5351.15	286.49	126.51	4.00	METEK	0
$31\mathrm{tnw}07.6\mathrm{m}$	33587.28	5351.17	286.49	127.23	5.84	RMY81000	0
$32\mathrm{tnw}07.8\mathrm{m}$	33587.28	5351.14	286.49	126.67	7.85	RMY81000	0
$33\mathrm{tnw}07.10\mathrm{m}$	33587.19	5351.35	286.50	126.43	10.14	Gill WM Pro	0
$34\mathrm{tnw}07.12\mathrm{m}$	33587.18	5351.36	286.50	124.81	11.99	RMY81000	0
$35\mathrm{tnw}07.20\mathrm{m}$	33587.19	5351.44	286.50	124.48	20.01	Gill WM Pro	0
$36\mathrm{tnw}07.30\mathrm{m}$	33587.11	5351.51	286.50	123.43	29.85	Gill WM Pro	0

Table 9: Location of sonic anemometers

$\frac{h_s(agl)}{40.08}$			Northing I	Easting	N. Name
40.08					
	122.57	286.50	5351.52	33587.10	$37\mathrm{tnw}07.40\mathrm{m}$
56.85	121.14	286.50	5351.58	33587.03	$38\mathrm{tnw}07.60\mathrm{m}$
				20 m	Tower height: 2
2.54	126.67	339.38	5479.01	33749.54	$39\mathrm{tnw}08.2\mathrm{m}$
10.69	125.98	339.42	5479.10	33749.49	$40\mathrm{tnw}08.10\mathrm{m}$
20.38	125.90	339.43	5479.12	33749.55	$41\mathrm{tnw}08.20\mathrm{m}$
				10 m	Tower height: 1
1.66	108.94	388.20	5587.71	33864.02	$42\mathrm{tnw}09.2\mathrm{m}$
9.40	106.65	388.24	5587.83	33864.09	$43\mathrm{tnw}09.10\mathrm{m}$
				60 m	Tower height: 6
9.86	118.88	413.47	5627.95	33952.00	$44\mathrm{tnw10.10m}$
19.51	116.75	413.50	5628.03	33952.05	$45\mathrm{tnw}10.20\mathrm{m}$
29.61	116.31	413.51	5628.09	33952.07	$46\mathrm{tnw}10.30\mathrm{m}$
39.87	114.65	413.53	5628.17	33952.09	$47\mathrm{tnw}10.40\mathrm{m}$
56.66	114.07	413.55	5628.24	33952.12	$48\mathrm{tnw}10.60\mathrm{m}$
				20 m	Tower height: 2
2.50	153.54	437.00	5696.15	34042.92	$49\mathrm{tnw}11.2\mathrm{m}$
10.63	150.23	437.00	5696.30	34043.05	$50\mathrm{tnw}11.10\mathrm{m}$
20.96	151.63	437.00	5696.31	34043.08	$51\mathrm{tnw}11.20\mathrm{m}$
				30 m	Tower height: 3
2.13	92.70	421.33	5717.03	34095.92	$52\mathrm{tnw}12.2\mathrm{m}$
4 .16	92.40	421. <mark>33</mark>	5717.01	34095.95	$53\mathrm{tnw}12.4\mathrm{m}$
6.15	92.32	421 <mark>.31</mark>	5717.02	34096.00	$54\mathrm{tnw}12.6\mathrm{m}$
8.24	91.47	421.30	5717.03	34096.02	$55\mathrm{tnw}12.8\mathrm{m}$
9.74	91.05	421.37	5717.09	34095.74	$56\mathrm{tnw}12.10\mathrm{m}$
11.85	90.70	421 .35	5717.11	34095.78	$57\mathrm{tnw}12.12\mathrm{m}$
19.63	88.84	421.38	5717.21	34095.58	$58\mathrm{tnw}12.20\mathrm{m}$
27.30	90.17	421.41	5717.30	34095.38	$59\mathrm{tnw}12.30\mathrm{m}$
				30 m	Tower height: 3
1.18	270.70	3 84.73	5777.09	34 140.58	$60\mathrm{tnw}13.2\mathrm{m}$
3.09	270.62	384.73	5777.09	34140.58	$61\mathrm{tnw}13.4\mathrm{m}$
5.11	270.45	384.72	5777.08	34140.59	$62\mathrm{tnw}13.6\mathrm{m}$
7.16	270.39	384.73	5777.06	34140.60	$63\mathrm{tnw}13.8\mathrm{m}$
9.24	270.13	384.42	5777.07	34 140.93	$64\mathrm{tnw}13.10\mathrm{m}$
11.17	270.61	384.42	5777.08	34140.94	65 tnw13.12m
19.07	270.15	384.34	5777.09	34 141.39	$66\mathrm{tnw}13.20\mathrm{m}$
26.90	270.70	384.27	5777.18	34141.74	$67\mathrm{tnw}13.30\mathrm{m}$
				30 m	Tower height: 3
2.81	138.96	348.98	5816.54	34222.96	$68\mathrm{tnw}14.2\mathrm{m}$
3.87	107.09	348.98	5816.55	34222.98	$69\mathrm{tnw}14.4\mathrm{m}$
5.86	106.74	348.98	5816.57	34222.99	$70\mathrm{tnw}14.6\mathrm{m}$
7.91		348.98	5816.58	34223.00	$71\mathrm{tnw}14.8\mathrm{m}$
9.66	106.04	349.00	5816.70	34222.72	$72\mathrm{tnw}14.10\mathrm{m}$
11.61	106.23	349.00	5816.69	34222.75	$73\mathrm{tnw}14.12\mathrm{m}$
19.37		349.02	5816.73	34222.49	$74\mathrm{tnw}14.20\mathrm{m}$
27.13	105.10		5816.77	34222.25	$75\mathrm{tnw}14.30\mathrm{m}$
					Tower height: 3
2.17					
$\begin{array}{c} 10.69\\ 20.38\\ \hline\\ 1.66\\ 9.40\\ \hline\\ 9.86\\ 19.51\\ 29.61\\ 39.87\\ 56.66\\ \hline\\ 2.50\\ 10.63\\ 20.96\\ \hline\\ 2.13\\ 4.16\\ 6.15\\ 8.24\\ 9.74\\ 11.85\\ 19.63\\ 27.30\\ \hline\\ 11.85\\ 19.63\\ 27.30\\ \hline\\ 1.18\\ 3.09\\ 5.11\\ 7.16\\ 9.24\\ 11.85\\ 19.63\\ 27.30\\ \hline\\ 2.81\\ 3.87\\ 5.86\\ 7.91\\ 9.66\\ 11.61\\ 19.37\\ \hline\end{array}$	125.98 125.90 108.94 106.65 116.75 116.31 114.65 114.07 153.54 150.23 151.63 92.70 92.40 92.32 91.47 91.05 90.70 88.84 90.17 270.70 270.62 270.45 270.39 270.13 270.61 270.61 270.70 138.96 107.09 106.74 106.23 104.40	339.42 339.43 388.20 388.24 413.47 413.50 413.51 413.53 413.55 437.00 437.00 437.00 437.00 437.00 437.00 421.33 421.33 421.33 421.31 421.30 421.37 421.35 421.38 421.41 384.73 384.72 384.73 384.72 384.73 384.72 384.42 384.42 384.42 384.42 384.42 384.42 384.42 384.98 348.98	$\begin{array}{c} 5479.10\\ 5479.12\\ \\\hline 5479.12\\ \\\hline 5479.12\\ \\\hline 5479.12\\ \\\hline 5479.12\\ \\\hline 5479.12\\ \\\hline 5587.83\\ \\\hline 5587.83\\ \\\hline 5628.74\\ \\\hline 5628.03\\ \\\hline 5628.03\\ \\\hline 5628.09\\ \\\hline 5628.03\\ \\\hline 5628.17\\ \\\hline 5628.24\\ \\\hline 5696.30\\ \\\hline 5777.03\\ \\\hline 5717.03\\ \\\hline 5717.09\\ \\\hline 5717.09\\ \\\hline 5717.09\\ \\\hline 5777.09\\ \\\hline 5777.09\\ \\\hline 5777.08\\ \\\hline 5777.18\\ \\\hline 5816.55\\ \\\hline 5816.57\\ \\\hline 5816.58\\ \\\hline 5816.70\\ \\\hline 5816.69\\ \\\hline 5816.73\\ \\\hline 58$	$\begin{array}{c} .49\\ .55\\ .02\\ .09\\ .00\\ .05\\ .07\\ .09\\ .12\\ .92\\ .05\\ .08\\ .92\\ .95\\ .00\\ .02\\ .74\\ .78\\ .58\\ .58\\ .58\\ .58\\ .58\\ .58\\ .58\\ .5$	$\begin{array}{r} 33 749\\ 33 749\\ 33 749\\ 33 749\\ 33 749\\ 33 749\\ \hline 33 749\\ \hline 33 749\\ \hline 33 749\\ \hline 33 752\\ \hline 33 952\\ \hline 34 92\\ \hline 34 95\\ \hline 35 \\ 34 95\\ \hline 34 95\\ \hline 35 \\ 34 95\\ \hline 35 \\ 34 95\\ \hline 35 \hline 35 \\ 35 \hline 35 \\ 35 \hline 35 \\ 35 \hline 35 \hline$

continuation from the previous page

continuation from the	e previous page						
N. Name	Easting	Northing E		α	$h_s(agl)$	Model(sn)	
$77\mathrm{tnw}15.4\mathrm{m}$	34273.25	5843.31	330.26	80.77	4.18	GillWM	0
$78\mathrm{tnw}15.6\mathrm{m}$	34273.25	5843.32	330.26	80.61	6.16	GillWM	0
$79\mathrm{tnw}15.8\mathrm{m}$	34273.25	5843.31	330.26	80.24	8.22	GillWM	0
$80\mathrm{tnw}15.10\mathrm{m}$	34272.94	5843.31	330.37	79.78	9.88	GillWM	0
$81\mathrm{tnw}15.12\mathrm{m}$	34272.94	5843.30	330.37	79.93	11.84	GillWM	0
$82\mathrm{tnw}15.20\mathrm{m}$	34272.62	5843.24	330.49	79.10	19.47	GillWM	0
$83\mathrm{tnw}15.30\mathrm{m}$	34272.26	5843.25	330.57	76.17	27.17	GillWM	0
Tower height: 30	0 m						
$84\mathrm{tnw16.2m}$	34350.06	5868.89	306.65	88.33	1.65	GillWM	0
$85\mathrm{tnw16.4m}$	34350.06	5868.89	306.65	88.27	3.68	GillWM	0
$86\mathrm{tnw16.6m}$	34350.06	5868.90	306.65	88.00	5.69	GillWM	0
$87\mathrm{tnw16.8m}$	34350.06	5868.89	306.65	87.86	7.73	GillWM	0
$88\mathrm{tnw}16.10\mathrm{m}$	34349.75	5868.91	306.65	87.42	9.49	GillWM	0
$89\mathrm{tnw}16.12\mathrm{m}$	34349.75	5868.90	306.65	87.61	11.43	GillWM	0
$90\mathrm{tnw}16.20\mathrm{m}$	34349.41	5868.86	306.65	87.55	19.19	GillWM	0
$91\mathrm{tnw}16.30\mathrm{m}$	34349.10	5868.88	306.65	88.73	26.99	GillWM	0
Tower height: 20	0 m						
$92\mathrm{tse}01.2\mathrm{m}$	32960.82	3942.29	252.69	117.50	9.91	CSAT3A	0
$93\mathrm{tse}01.20\mathrm{m}$	32960.89	3942.30	252.69	115.93	28.79	CSAT3A	0
Tower height: 30	0 m						
$94\mathrm{tse}02.10\mathrm{m}$	33260.15	4138.29	372.36	112.57	8.62	CSAT3A	2050
$95\mathrm{tse}02.30\mathrm{m}$	33260.07	4138.26	372. <mark>3</mark> 0	111.28	27 .71	CSAT3A	2037
Tower height: 10	00 m						
$96 \operatorname{tse} 04.10 \mathrm{m}$	33394.24	4258.92	473.04	137.73	10 .30	Gill <mark>WM</mark> Pro	0
$97\mathrm{tse}04.20\mathrm{m}$	33394.20	4258.91	473.03	135.05	19.93	Gill WM Pro	0
$98\mathrm{tse}04.30\mathrm{m}$	33394.17	4258.93	473.03	135.00	27.81	Gill WM Pro	0
$99\mathrm{tse}04.40\mathrm{m}$	33394.22	4258.88	473.03	134.57	37.05	Gill WM Pro	0
$100\mathrm{tse}04.60\mathrm{m}$	33394.17	4258.86	473.02	134.88	57.16	Gill WM Pro	0
$101\mathrm{tse}04.80\mathrm{m}$	33394.14	4258.83	473.01	135.42	77.29	Gill WM Pro	0
$102\mathrm{tse}04.100\mathrm{m}$	33394.11	4258.74	473.00	136.33	97.29	Gill WM Pro	0
Tower height: 2	m						
$103\mathrm{tse}05.2\mathrm{m}$	33497.76	4425.85	422.46	135.43	1.54	CSAT3A	1006
Tower height: 60	0 m						
104 tse06.10m	33 636.63	4487.32	387.90	148.37	15.47	Gill WM Pro	0
$105 \mathrm{tse}06.20\mathrm{m}$	33636.61	4487.33	387.90	147.75	21.45	Gill WM Pro	0
$106 \operatorname{tse} 06.30 \mathrm{m}$	33 636.59	4487.36	387.90	147.13	29.58	Gill WM Pro	0
$107 \mathrm{tse06.40m}$	33636.58	4487.37	387.90	146.06	39.40	Gill WM Pro	0
108 tse06.60m	33 636.5 6	4487.44	387.89	143.38	57.37	Gill WM Pro	0
Tower height: 20	0 m						
$109 \operatorname{tse} 07.10 \mathrm{m}$	33818.24	4566.09	348.30	286.70	10.21	CSAT3	1550
$110\mathrm{tse07.20m}$	33821.93	4564.96	349.22	107.46	19.31	CSAT3A	P1004
Tower height: 20	0 m						
111 tse08.10m	33977.68	4634.05	341.45	123.53	9.85	METEK 20	007 19011/01
$112\mathrm{tse}08.20\mathrm{m}$	33977.69	4634.02	341.45		19.84	METEK	102122234
Tower height: 10							
113 tse09.10m	34153.34	4845.14	305.37	154.80	10.38	Gill WM Pro	0
$114\mathrm{tse09.20m}$	34153.27	4844.87	305.35			Gill WM Pro	0
$115\mathrm{tse09.30m}$	34153.19	4844.85	305.34			Gill WM Pro	0
						to be continued of	n the next page

continuation from the previous page

continuation from the	e previous page							
N. Name	Easting	Northing E	$levation^1$	α	$h_s(agl)$	Ν	Model(sn)	
$116 \operatorname{tse09.40m}$	34153.07	4844.81	305.33	156.21	40.60	Gill	WM Pro	0
$117\mathrm{tse09.60m}$	34152.88	4844.76	305.32	156.83	60.15	Gill	WM Pro	0
$118\mathrm{tse09.80m}$	34152.77	4844.55	305.30	156.90	80.28	Gill	WM Pro	0
$119\mathrm{tse}09.100\mathrm{m}$	34152.59	4844.49	305.28	158.77	97.47	Gill	WM Pro	0
Tower height: 3	0 m							
$120 \operatorname{tse10.10m}$	34274.41	4923.06	332.92	137.08	10.36		METEK	2007 09006/01
$121 \mathrm{tse10.30m}$	34274.28	4922.83	332.88	136.76	29.27		METEK	$0102 \ 12 \ 2235$
Tower height: 6	0 m							
$122 \operatorname{tsel}{1.10\mathrm{m}}$	34334.59	4972.80	355.12	136.17	12.53	Gill	WM Pro	0
$123\mathrm{tse}11.20\mathrm{m}$	34334.49	4972.98	355.11	134.71	19.96	Gill	WM Pro	0
$124\mathrm{tse}11.30\mathrm{m}$	34334.39	4973.17	355.11	133.29	29.84	Gill	WM Pro	0
$125\mathrm{tse}11.40\mathrm{m}$	34334.23	4973.38	355.09	131.43	39.83	Gill	WM Pro	0
$126 \operatorname{tsel}{1.60\mathrm{m}}$	34333.94	4973.79		128.68			WM Pro	0
Tower height: 2								
127 tse12.10m	34 446.38	5048.37	414.65	337.88	9.79		CSAT3	1552
$128\mathrm{tse}12.20\mathrm{m}$	34448.07	5044.25		157.42	19.71		CSAT3A	2043
Tower height: 1								
129 tse13.10m	34 536.23	5111.79	452.91	129.57	10.02	Gill	WM Pro	0
130 tse 13.20 m	34536.18	5111.74		129.91			WM Pro	0
131 tse 13.30 m	34536.12	5111.66		131.15			WM Pro	0
$132 \operatorname{tse} 13.40 \mathrm{m}$	34536.09	5111.59		131.75			WM Pro	0
133 tse 13.60 m	34535.96	5111.51		133.47			WM Pro	0
134 tse 13.80 m	34535.76	5111.01 5111.43		135.36			WM Pro	0
135 tse 13.100 m	34535.63	5111.10 5111.33		137.73			WM Pro	0
Tower height: 2		0111.00	102.01	101.10	01.01	Gim		Ŭ
136 rsw01.10m	33730.51	3803.29	472 10	136.18	9.38	5	METEK	2007 08015/01
137 rsw01.20m	33730.47	3803.33		136.38	19.90		METEK	010212 236
Tower height: 2		0000.00	112.10	100.00	10.01			010212 200
138 rsw02.10m	33 633.48	3901.19	478 17	145.68	10.14	R	MY81000	1368
139 rsw02.20m	33633.52	3901.21		143.33	20.06		MY81000	499
Tower height: 6		5501.21	410.11	140.00	20.00	10	101000	433
140 rsw03.10m	33569.60	4006.76	472.05	147.09	0.07	Cill	WM Pro	0
140 rsw 03.10 m 141 rsw 03.20 m		4006.80		147.09			WM Pro	
141 ISW03.20III 142 rsw03.30m	$\frac{33569.72}{33569.85}$							0
142 rsw03.40m		4006.84		143.94			WM Pro	0
	33569.98 2257016	4006.89		142.33			WM Pro	0
144 rsw03.60m	33 570.16	4006.93	472.84	140.43	30.70	GIII	WM Pro	0
Tower height: 1		4160.17	479.74	164 17	0.00			D1009
145 rsw04.10m	<u>33 453.60</u>	4169.17	473.74	164.17	9.92		CSAT3A	P1008
Tower height: 1		4549.20	470.11	147 40	0.00		METER	0100100000
146 rsw05.10m	33 195.80	4548.30	479.11	147.49	9.98		METEK	0102122233
Tower height: 6		4696.07	400.40	184.14	10.20	0.11	WMD	0
147 rsw06.10m	33 087.91	4686.07		154.14			WM Pro	0
148 rsw06.20m	33 087.93	4686.04		143.87			WM Pro	0
149 rsw06.30m	33 087.95	4686.05		142.67			WM Pro	0
150 rsw06.40m	33 087.99	4686.09		141.85			WM Pro	0
151 rsw06.60m	33 088.07	4686.09	482.49	149.34	57.15	Gill	WM Pro	0
Tower height: 2		5000.05	400.47	104 55	10.40			1101
$152\mathrm{rsw}07.10\mathrm{m}$	32822.84	5000.95	490.47	124.57	10.48		CSAT3	1121
						to be	o continued	on the next page

continuation from the previous page

continuation from the	previous page						
N. Name	Easting	Northing E	$levation^1$	αh_s	s(agl)	Model(sn)	
$153\mathrm{rsw}07.20\mathrm{m}$	32822.79	5000.90	490.47 124	4.93	20.37	CSAT3A	1244
Tower height: 20) m						
$154 \operatorname{rsw} 08.10 \mathrm{m}$	32734.34	5141.92	488.88 152	2.11	10.28	METEK	0
$155\mathrm{rsw}08.20\mathrm{m}$	32734.39	5141.88	488.88 151	1.21	20.31	METEK	0
Tower height: 10) m						
156 rne01.10m	34886.81	4772.73	453.56 108	8.86	10.02	CSAT3A	1007
Tower height: 20) m						
$157\mathrm{rne}02.10\mathrm{m}$	34737.43	4877.21	458.26 166	6.47	10.41	RMY81000	725
$158\mathrm{rne}02.20\mathrm{m}$	34737.48	4877.16	$458.25\ 164$	4.97	20.21	RMY81000	1354
Tower height: 10) m						
159 rne03.10m	34630.65	5025.52	461.66 122	2.83	9.56	CSAT3A	P1005
Tower height: 10) m						
160 rne04.10m	34414.87	5281.94	454.01 130).34	10.20	RMY81000	0
Tower height: 20) m						
161 rne06.10m	34178.25	5565.27	451.10 168	8.32	9.87	CSAT3	1120
$162\mathrm{rne}06.20\mathrm{m}$	34178.30	5565.22	451.11 166	5.69	19.72	CSAT3A	2033
Tower height: 20) m						
163 rne07.10m	33886.53	5851.99	466.90 161	1.55	10.61	CSAT3A	2046
$164\mathrm{rne07.20m}$	33886.60	5852.00	466.89 159	9.98	20.03	CSAT3A	1009
Tower height: 10) m						
165 v01.2m	34575.05	4503.62	330.60 135	5.00	1.89	CSAT3	1124
$166\mathrm{v}01.10\mathrm{m}$	34575.07	4503.54	330.60 134	4.69	9.92	CSAT3A	2031
Tower height: 10) m						
167 v03.2m	34235.99	4696.82	307.68 128	8.03	1.92	CSAT3A	2051
$168\mathrm{v}03.10\mathrm{m}$	34235.97	4696.85	307.66 127	7.78	9.90	CSAT3A	1003
Tower height: 10							
169 v04.2m	33951.14	4978.78	295.68 124	4.15	2.09	CSAT3	1001
$170\mathrm{v}04.10\mathrm{m}$	33951.14	4978.78	295.68 123	3.41	10.01	CSAT3A	2031
Tower height: 20) m						
171 v05.2m	33 811.59	5125.80	291.59 319	9.33	2.27	METEK 2005	05007/01
$172\mathrm{v}05.10\mathrm{m}$	33814.75	5122.53	291.59 134	4.02	10.01	METEK 2007	,
$173\mathrm{v}05.20\mathrm{m}$	33814.75	5122.56	291.59 133		20.02	METEK 2007	,
Tower height: 20) m						7
174 v06.2m	33 704.27	523 8.11	288.59 126	5.84	2.12	CSAT3	1123
175 v06.10m	33704.18	5238.12	288.63 127	7.33	10.00	CSAT3	1119
176 v06.20m	33 704.35	5238.11	288.63 126	5.35	20.02	CSAT3A	2048
Tower height: 20							
177 v07.2m	33 388.58	5457.11	281.52 113	3.04	2.08	CSAT3	1553
$178\mathrm{v07.4m}$	33388.62	5457.10	281.52 112	2.81	4.18	RMY81000	1353
179 v07.6m	33388.62	5457.11	281.52 112	2.70	5.92	RMY81000	726
180 v07.8m	33388.62	5457.09	281.52 112	2.66	7.97	RMY81000	1330
181 v07.10m	33388.46	5457.21	281.52 113	3.39	9.92	CSAT3	1123
$182\mathrm{v07.12m}$	33388.62	5457.04	281.51 113	3.66	11.88	RMY81000	646
$183\mathrm{v07.20m}$	33388.56	5457.11	281.52 113		20.01	CSAT3	0
Tower height: 10							
184 Extreme SW	31 630.72	3670.69	217.76 (0.00	10.00	RMY81000	0
Tower height: 10							
185 Extreme NE	34643.46	6174.68	260.27 172	2.00	9.40	0	0
						to be continued on th	ne next page

from the

continuation from the previous page

N. Name	Easting	$Northing Elevation^1$	$\alpha h_s(agl)$	Model(sn)	
Source: Towers an	nd Sonics/Latex Soni	cs 08-02-2018 16:42			
(1) Elevation is id	entical to z_{boom} , as in	n Menke and Mann [2017].	See also section 1	.2.2	

A.2 Location of towers

Table 10: Tower location

N.	Terrain		Sonic	tower	Lattice	e tower	Dist	Dist
	elevation	α	Easting	Northing	Easting	Northing	tow	vtow
01	297.85	142.52	32611.28	4623.17	32610.03	4625.02	2.23	
02	392.38	185.88	32804.82	4749.86	32804.31	4750.42	0.76	_
02a	392.38	305.19	32802.56	4751.43	32804.45	4750.25	2.23	4.12
02b	392.39	126.22	32805.95	4749.08	32804.23	4750.50	2.23	—
03	486.77	110.95	32917.67	4860.89	32915.64	4861.81	2.23	_
04	395.17	177.37	33159.50	4963.65	33158.83	4964.31	1.59	—
04a	395.21	126.12	33160.43	4962.96	33158.71	4964.37	2.23	4.06
04b	395.07	305.50	33157.17	4965.38	33159.06	4964.19	2.23	_
05	367.95	291.32	33202.57	5042.21	33203.56	504 <mark>0.95</mark>	1.59	_
05a	367.86	317.10	33202.17	5042.63	33203.59	5040.91	2.23	4.10
05b	368.54	136.67	33205.01	5039.67	33 203.39	5041.20	2.23	_
06	333.85	117.43	33 434.16	5224.15	33 43 <mark>2.</mark> 25	5225.30	2.23	_
07	286.50	124.81	33 587.18	5351.36	33 5 <mark>85.</mark> 41	5352.79	2.28	-
08	339.41	126.18	33749.53	5479.08	33747.81	5480. <mark>50</mark>	2.23	_
09	388.22	107.80	33 864.06	5587.77	33861.98	5588.57	2.23	
10	413.51	116.13	33 952.07	5628.10	33 950.09	5629.24	2.28	_
11	437.00		34 043.02	5696.25	34042.08	5698.28	2.23	_
12	421.35		34 095.80	5717.10	34093.57	5717.28	2.23	_
13	384.55		34 140.92	5777.09	34143.14	5776.94	2.23	_
14	349.00		34 222.77	5816.64	34 220.76	5817.51	2.19	_
14a	348.98		34 222.96	5816.54	34221.60	5818.30	2.23	0.25
14b	349.00		34 2 22.74	5816.66	34220.64	5817.40	2.23	_
15	330.36		34 272.97	5843.29	34270.76	5843.02	2.23	_
16	306.65		34349.78	5868.89	34347.55	5868.94	2.23	_
17	252.69		32960.86	3942.30	32 958 .93	3943.41	2.23	_
18	372.33		33 260.11	4138.28	33 258.09	4139.23	2.23	_
20	473.02		<mark>33 3</mark> 94.18	4258.87	33 392.69	4260.63	2.31	_
21	422.46	135.43	33 497.76	4425.85	33496.29	4427.53	2.23	_
22	3 <mark>87.9</mark> 0	146.54	33 636.59	4487.36	33635.47	4489.35	2.28	_
23	348.76	197.08	33821.93	4564.96	33 820.13	4565.66	1.93	_
23a	348.30	286.70	33818.24	4566.09	33 820.41	4565.58	2.23	3.86
23b	349.22		33 821.93	4564.96	33 819.85		2.23	_
24	341.45		33 977.69		33 975.92		2.23	_
25	305.33		34153.02	4844.78	34152.25		2.31	_
26	332.90		34 274.35	4922.95	34 272.92	4924.66	2.23	_
27	355.10		34334.33		34332.77		2.28	_
28	414.65		34 448.07		34 447.34		2.23	_
28a	414.65		34 446.38	5048.37	34 447.34		2.23	4.45
28b	414.65		34 448.07		34 447.34		2.23	
							ued on the ne	ext nage

Perdigão-2017: experiment layout

			Virtua	l tower	Toy	wer	Dist	Dist
Ν.	Elevation	α	Easting	Northing	Easting	Northing	tow	stow
29	452.88	132.70	34535.99	5111.58	34534.42	5113.26	2.30	_
32	472.10	136.28	33730.49	3803.31	33729.05	3805.01	2.23	—
33	478.17	144.51	33633.50	3901.20	33632.31	3903.09	2.23	—
34	472.90	143.87	33569.86	4006.84	33568.65	4008.77	2.28	—
35	473.74	164.17	33453.60	4169.17	33453.12	4171.35	2.23	—
36	479.11	147.49	33195.80	4548.30	33 194.71	4550.25	2.23	—
37	482.49	146.37	33087.97	4686.07	33 086.85	4688.04	2.27	—
38	490.47	124.75	32822.82	5000.93	32 821.06	5002.30	2.23	
39	488.88	151.66	32734.37	5141.90	32733.42	5143.92	2.23	-
40	453.56	108.86	34886.81	4772.73	34884.75	4773.57	2.23	
41	458.26	165.72	34737.46	4877.19	34737.03	4879.37	2.23	-
42	461.66	122.83	34630.65	5025.52	34628.85	5026.84	2.23	_
43	454.01	130.34	34414.87	5281.94	34413.26	5283.48	2.23	_
45	451.11	167.51	34178.28	5565.25	34177.92	5567.45	2.23	_
46	466.90	160.77	33886.57	5852.00	33885.95	5854.14	2.23	—
47	330.60	134.85	34575.06	4503.58	34573.57	4505.24	2.23	—
49	307.67	127.91	34235.98	4696.84	34234.30	4698.30	2.23	_
50	295.68	123.78	33951.14	4978.78	33949.36	498 <mark>0.13</mark>	2.23	-
51	291.59	195.60	33813.70	5123.63	33813.20	5124.18	0.74	_
51a	291.59	319.33	33811.59	5125.80	33813.14	5124.20	2.23	4.54
51b	291.59	133.74	33814.75	5122.55	33 81 <mark>3.</mark> 23	5124.18	2.23	_
52	288.62	126.84	33704.27	5 <mark>238.</mark> 11	33 7 <mark>02.</mark> 56	5239.55	2.23	_
53	281.52	113.16	33388.58	5457.11	33386.59	5458.10	2.23	-
54	0.00	0.00	31630.72	3670.69	31630.59	3668.47	2.23	72
55	260.27	172.00	34643.46	6174. <mark>6</mark> 8	34643.28	6176.90	2.23	_
Sour	ce: Towers a	and Sonic	s/Latex Tow	wers	05-02-2018	14:57		

,• ,•	c	11	•	
continuation	Irom	tne	previous	page

(1) Elevation is identical to z_{boom} , as in Menke and Mann [2017]. See also section 1.2.2

A.3 Equipment on towers

	Equipment	Height (agl)	Orientation	Equipment	
Source:	NETCDF Towers/NETCDF Towers Summary		14-11-2017 19:42		
01	Datalogger	$1.5 \mathrm{m}$			
tnw01	3D Sonic anemometer	$2.04 \mathrm{~m}$	141.81	RMY8100	
	3D Sonic anemometer	$9.94 \mathrm{m}$	143.92	RMY8100	
					To remove
					To remove
	3D Sonic anemometer	20.01 m	141.83	RMY8100	
	Barometer	$2 \mathrm{m}$		Vaisala	To add
02	Soil heat flux/moisture sensor			Hukseflux HFP01SC	
tnw02	Datalogger	$1.5 \mathrm{m}$			
	3D Sonic anemometer	2.03 m	<mark>30</mark> 5.19	RMY8100	
	3D Sonic anemometer	9.92 m	125.09	$\rm CSAT3$	
	3D Sonic anemometer	19.99 m	127.35	$\rm CSAT3$	
	Radiometer	20 m		Hukseflux NR01	
	CO2/H2O Gas Analyzer	$20 \mathrm{m}$		CSI IRGA	
	3D Sonic anemometer	20 m		CSI IRGA	To add
	Wetness Sensor	$20 \mathrm{m}$		Decagon Leaf	To add
	Soil temperature	1/4/6/9 cm		Hukseflux STP01	To add
	Air temperature and humidity sensor	2 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	To add
03	Datalogger	$1.5 \mathrm{~m}$			
$\mathrm{tnw03}$	3D Sonic anemometer	$2 \mathrm{m}$		METEK	
					To remove
					To remove
	3D Sonic anemometer	$10.24~\mathrm{m}$	111.75	METEK	

Table 11: Towers and equipment ?Incomplete?

A. Tables

continuation from the previous page

	Equipment	Height (agl)	Orientation	Equipment	
	Air temperature and humidity sensor	2 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	To add
04	Datalogger	$1.5 \mathrm{m}$			
tnw04	3D Sonic anemometer	$4.28 \mathrm{~m}$	126.49	RMY81000	
	3D Sonic anemometer	$5.95 \mathrm{~m}$	125.94	RMY81000	
	3D Sonic anemometer	8.1 m	126.24	RMY81000	
	3D Sonic anemometer	$10.25 \mathrm{~m}$	125.99	RMY81000	
	3D Sonic anemometer	12.52 m	307.61	RMY81000	
					To remove
					To remove
	3D Sonic anemometer	20.31 m	303.38	RMY81000	
	3D Sonic anemometer	$2\mathrm{m}$		RMY81000	To add
05	Soil heat flux/moisture sensor			Hukseflux HPF01SC	
tnw05	Datalogger	$1.5 \mathrm{m}$			
	3D Sonic anemometer	$2.13 \mathrm{m}$	317.05	RMY8100	
	3D Sonic anemometer	4.07 m	316.71	RMY8100	
	3D Sonic anemometer	$6.24 \mathrm{~m}$	317.17	RMY8100	
	3D Sonic anemometer	8.33 m	317.52	RMY8100	
	3D Sonic anemometer	10.2 m	317.26	CSAT3	
	3D Sonic anemometer	$12.24 \mathrm{m}$	316.88	RMY8100	
	3D Sonic anemometer	19.53 m	136.67	CSAT3	
	Radiometer	20 m		Hukseflux NR01	
	3D Sonic Anemometer	20 m		CSI IRGA	To add
	CO2/H2O Gas Analyzer	20 m		CSI IRGA	
	Wetness Sensor	20 m		Decagon Leaf	To add
	Air temperature and humidity sensor	$2 \mathrm{m}$		NCAR Hygrothermometer	To add

Tower Equipment	Height (agl)	Orientation	$\operatorname{Equipment}$	
Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	To add
Soil temperature	$1/4/6/9~{ m cm}$		Hukseflux STP01	To add
06 Datalogger	$1.5 \mathrm{~m}$			
tnw06 3D Sonic anemometer	$2 \mathrm{m}$		RMY8100	
3D Sonic anemometer	$4.17 \mathrm{~m}$	116.47	RMY8100	
3D Sonic anemometer	$6.3 \mathrm{m}$	117.09	RMY8100	
3D Sonic anemometer	8.33 m	117.58	RMY8100	
3D Sonic anemometer	10.4 m	118.07	RMY8100	
3D Sonic anemometer	12.29 m	118.23	RMY8100	
				To remove
				To remove
3D Sonic anemometer	20.35 m	118.64	RMY8100	
07 3D Sonic anemometer	3.34 m	126.51	METEK	
tnw07 3D Sonic anemometer	$5.32 \mathrm{m}$	127.23	RMY8100	
3D Sonic anemometer	7.33 m	126.67	RMY8100	
3D Sonic anemometer	9.47 m	126.43	Gill WindMaster	
3D Sonic anemometer	10.16 m	126.50	RMY8100	
Datalogger	12 m			
3D Sonic anemometer	20.01 m	124.48	Gill WindMaster	
3D Sonic anemometer	29.85 m	123.43	Gill WindMaster	
3D Sonic anemometer	40.08 m	122.57	Gill WindMaster	
3D Sonic anemometer	$56.85 { m m}$	121.14	Gill WindMaster	
Air temperature and humidity sensor	2 m		NCAR Hygrothermometer	
Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	
Air temperature and humidity sensor	20 m		NCAR Hygrothermometer	To add
Air temperature and humidity sensor	40 m		NCAR Hygrothermometer	To add

continuation from the previous page

Tower	Equipment	Height (agl)	Orientation	Equipment	
	Datalogger	$1.5 \mathrm{~m}$			
$\mathrm{tnw08}$	3D Sonic anemometer	$2.54 \mathrm{~m}$	126.67	RMY8100	
	3D Sonic anemometer	$10.69 \mathrm{~m}$	125.98	RMY8100	
					To remove
					To remove
	3D Sonic anemometer	$20.38~\mathrm{m}$	125.90	RMY8100	
09	Datalogger	$1.5 \mathrm{m}$			
$\mathrm{tnw09}$	3D Sonic anemometer	1.66 m	108.94	RMY8100	
	3D Sonic anemometer	9.4 m	106.65	CSAT 3	
					To remove
					To remove
					To remove
	Radiometer	10 m		Hukseflux NR01	To add
	Wetness Sensor	10 m		Decagon Leaf	To add
	CO2/H2O Gas Analyzer	$10 \mathrm{m}$		CSI IRGA	To add
	3D Sonic anemometer	10 m		CSI IRGA	To add
	Soil Heat flux/moisture sensor			Hukseflux HFP01SC	To add
	Soil temperature	1/4/6/9 cm		Hukseflux STP01	To add
10	3D Sonic anemometer	9.86 m	118.88	Gill WindMaster	
tnw10	Datalogger	$12 \mathrm{m}$			
	3D Sonic anemometer	19.51 m	116.75	Gill WindMaster	
	3D Sonic anemometer	29.61 m	116.31	Gill WindMaster	
	3D Sonic anemometer	39.87 m	114.65	Gill WindMaster	
	3D Sonic anemometer	$56.66~\mathrm{m}$	114.07	Gill WindMaster	
	Air temperature and humidity sensor	$2 \mathrm{m}$		NCAR Hygrothermometer	r To add

continuation from the previous page

	ation from the previous page				
Tower	Equipment	Height (agl)	Orientation	Equipment	
	Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	
	Air temperature and humidity sensor	$20 \mathrm{m}$		NCAR Hygrothermometer	
	Air temperature and humidity sensor	$40 \mathrm{m}$		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	60 m		NCAR Hygrothermometer	To add
11	Datalogger	$1.5 \mathrm{m}$			
tnw11	3D Sonic anemometer	$2.5 \mathrm{~m}$	153.54	RMY8100	
	3D Sonic anemometer	10.63 m	150.23	RMY8101	
					To remove To remove
	3D Sonic anemometer	20.96 m	151.63	RMY8100	
	Air temperature and humidity sensor	2 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	20 m		NCAR Hygrothermometer	To add
12 tnw12					
13 tnw13					
				to b	e continued on the next pa

Tower Equipment	Height (agl)	Orientation	Equipment	
14				
nw14				
15				
nw15				
16				
nw16				
			to be continu	ued on the next pa

| ^

lower	Equipment	Height (agl)	Orientation	Equipment	
17	Datalogger	$1.5 \mathrm{m}$			
tse01	3D Sonic anemometer	9.91 m	117.50	CSAT3	
	Radiometer	20 m		Hukseflux NR01	Not $20m$ but $30m$
	3D Sonic anemometer	28.79 m	115.93	CSAT 3	
	CO2/H2O Gas Analyzer	30 m		CSI IRGA	
	3D Sonic anemometer	30 m		CSI IRGA	To add
	Wetness sensor	30 m		Decagon Leaf	To add
	Soil temperature	$1/4/6/9 \mathrm{cm}$		Hukseflux STP01	To add
18	Soil heat flux/moisture sensor			Hukseflux HFP01SC	To add
tse02	Datalogger	1.5 m			
	3D Sonic anemometer	8.62 m	112.57	$\rm CSAT3$	
					To remove
	3D Sonic anemometer	27.71 m	111.28	$\rm CSAT3$	
	CO2/H2O Gas Analyzer	30 m		CSI IRGA	
	3D Sonic anemometer	30 m		CSI IRGA	To add
	Radiometer	30 m		Hukseflux NR01	To add
	Wetness Sensor	30 m		Decagon Leaf	To add
	Soil temperature	$1/4/6/9~{\rm cm}$		Hukseflux STP01	To add
19					
20	3D Sonic anemometer	10 m	137.73	Gill WindMaster	
tse04	Datalogger	$12 \mathrm{m}$			

continuation from the previous page

	• Equipment	Height (agl)	Orientation	Equipment	
	3D Sonic an <mark>emo</mark> meter	20 m	135.05	Gill WindMaster	
	3D Sonic anemometer	$30 \mathrm{m}$	135.00	Gill WindMaster	
	3D Sonic anemometer	40 m	134.57	Gill WindMaster	
	3D Sonic anemometer	$60 \mathrm{m}$	134.88	Gill WindMaster	
					To remove
	3D Sonic anemometer	$78 \mathrm{m}$	135.42	Gill WindMaster	
	3D Sonic anemometer	100 m	136.33	Gill WindMaster	
	Air temperature and humidity sensor	$2 \mathrm{m}$		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	20 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	40 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	60 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	80 m		NCAR Hygrothermometer	
	Air temperature and humidity sensor	100 m		NCAR Hygrothermometer	To add
21	Datalogger	1.5 m			
tse0	3D Sonic anemometer	$2 \mathrm{m}$		CSAT3	
					To remove
					To remove
					To remove
					To remove
	CO2/H2O Gas Analyzer	2 m		CSI IRGA	To add
	3D Sonic anemometer	2 m		CSI IRGA	To add
	Radiometer	$2 \mathrm{m}$		Hukseflux NR01	To add
	Soil Heat Flux/moisture sensor			Hukseflux STP01	
	Wetness Sensor	$2\mathrm{m}$		Decagon Leaf	
	Soil temperature	$1/4/6/9~\mathrm{cm}$		Hukseflux HFP01SC	

continuation from the previous page

Tower	Equipment	Height (agl)	Orientation	Equipment	
22	3D Sonic an <mark>emo</mark> meter	10 m	148.37	GillWindMaster	
tse06	Datalogger	$12 \mathrm{m}$			
	3D Sonic anemometer	$20 \mathrm{~m}$	147.75	GillWindMaster	
	3D Sonic anemometer	$30 \mathrm{m}$	147.13	GillWindMaster	
	3D Sonic anemometer	40 m	146.06	GillWindMaster	
	3D Sonic anemometer	$55 \mathrm{~m}$	143.38	GillWindMaster	60M from NETCDF
	Air temperature and humidity sensor	$2 \mathrm{m}$		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	20 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	40 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	60 m		NCAR Hygrothermometer	To add
	Barometer	2 m		Paroscientific	To add
23	Soil heat flux/moisture sensor			Hukseflux HFP01SC	
tse07	Datalogger	1.5 m			
					To remove
	3D Sonic anemometer	10 m	286.70	CSAT3	
	3D Sonic anemometer	$30 \mathrm{m}$	124.80	CSAT3	Height 20M from
					NETCDF
	CO2/H2O Gas Analyzer	20 m		CSI IRGA	To add
	3D Sonic anemometer	20 m		CSI IRGA	To add
	Wetness Sensor	$20 \mathrm{m}$		Decagon Leaf	To add
	Radiometer	20 m		Hukseflux NR01	To add
	Barometer			Paroscientific	To add
	Soil temperature	$1/4/6/9 { m cm}$		Hukseflux STP01	To add
24	Datalogger	$1.5 \mathrm{m}$			
tse08					To remove

continuation from the previous page

Tower	Equipment	Height (agl)	Orientation	Equipment	
	3D Sonic an <mark>emo</mark> meter	10 m	123.53	METEK	
					To remove
					To remove
	3D Sonic anemometer	20 m	124.80	METEK	
	Barometer	$2 \mathrm{m}$		Paroscientific	To add
25	3D Sonic anemometer	10 m	154.80	Gill WindMaster	
		10 m 12 m	134.60	Gill Windwaster	
tse09	Datalogger 3D Sonic anemometer	20 m	154.91	Gill WindMaster	
	3D Sonic anemometer			Gill WindMaster	
		30 m	155.12		
	3D Sonic anemometer	40 m	156.21	Gill WindMaster	T
		<u> </u>	150.00		To remove
	3D Sonic anemometer	60 m	156.83	Gill WindMaster	
	3D Sonic anemometer	80 m	156.90	Gill WindMaster	_
					To remove
	3D Sonic anemometer	100 m	158.77	Gill WindMaster	
	Air temperature and humidity sensor	$2\mathrm{m}$		NCAR Hygrothermometer	
	Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	
	Air temperature and humidity sensor	20 m		NCAR Hygrothermometer	
	Air temperature and humidity sensor	40 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	60 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	80 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	100 m		NCAR Hygrothermometer	To add
26					To remove
	Dataloggan	1.5 m			TO TEIHOVE
tse10	Datalogger	1.1 111			To nome or to
		10	197.00	METER	To remove
	3D Sonic anemometer	10 m	137.08	METEK	

Tower	Equipment	Height (agl)	Orientation	Equipment	
					To remove
					To remove
	3D Sonic anemometer	$30 \mathrm{m}$	136.76	METEK	
	Barometer	$2 \mathrm{m}$		Vaisala	To add
27	3D Sonic anemometer	$10 \mathrm{m}$		Gill WindMaster	
tse11	Datalogger	$12 \mathrm{m}$			
	3D Sonic anemometer	20 m		Gill WindMaster	
	3D Sonic anemometer	30 m		Gill WindMaster	
	3D Sonic anemometer	40 m		Gill WindMaster	
	3D Sonic anemometer	55 m		Gill WindMaster	60M in NETCDF
	Air temperature and humidity sensor	2 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	20 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	40 m		NCAR Hygrothermometer	To add
28	Soil heat flux/moisture sensor			Hukseflux HFP01SC	To add
tse12	Datalogger	1.5 m			
					To remove
	3D Sonic anemometer	10 m		CSAT3	
	3D Sonic anemometer	$20 \mathrm{m}$		CSAT3	
	CO2/H2O Gas Analyzer	20 m		CSI IRGA	To add
	3D Sonic anemometer	20 m		CSI IRGA	To add
	Radiometer	20 m		Hukseflux NR01	To add
	Soil temperature	1/4/6/9cm		Hukseflux STP01	To add
29	3D Sonic anemometer	$10 \mathrm{m}$		Gill WindMaster	
tse13	Datalogger	$12 \mathrm{m}$			

continuation from the previous page

Tower Equipment	Height (agl)	Orientation	Equipment	
3D Sonic an <mark>emo</mark> meter	20 m		Gill WindMaster	
3D Sonic anemometer	$30 \mathrm{m}$		Gill WindMaster	
3D Sonic anemometer	40 m		Gill WindMaster	
3D Sonic anemometer	60 m		Gill WindMaster	
3D Sonic anemometer	80 m		Gill WindMaster	
3D Sonic anemometer	$95 \mathrm{~m}$		Gill WindMaster	100m in NETCDF
Air temperature and humidity sensor	2 m		NCAR Hygrothermometer	To add
Air temperature and humidity sensor	r 10 m		NCAR Hygrothermometer	To add
Air temperature and humidity sensor	20 m		NCAR Hygrothermometer	To add
Air temperature and humidity sensor	: 40 m		NCAR Hygrothermometer	To add
Air temperature and humidity sensor	60 m		NCAR Hygrothermometer	To add
Air temperature and humidity sensor	: 80 m		NCAR Hygrothermometer	To add
Air temperature and humidity sensor	: 100 m		NCAR Hygrothermometer	To add
31				
32				To remove
rsw01 3D Sonic anemometer	10 m		METEK	
3D Sonic anemometer	20 m		METEK	
Barometer	$2 \mathrm{m}$		Vaisala	To add
33				To remove
	10		RMY8100	
	10 m			
rsw02 3D Sonic anemometer 3D Sonic anemometer	10 m 20 m		RMY8100	
rsw02 3D Sonic anemometer			RMY8100 Vaisala	To add

A. Tables

continuation from the previous page

	Equipment	Height (agl)	Orientation	Equipment	
34	Datalogger	8 m			
rsw03	3D Sonic anemometer	$10 \mathrm{m}$		Gill WIndMaster	
	3D Sonic anemometer	20 m		Gill WIndMaster	
	3D Sonic anemometer	30 m		Gill WIndMaster	
	3D Sonic anemometer	40 m		Gill WIndMaster	
	3D Sonic anemometer	$55 \mathrm{~m}$		Gill WIndMaster	60M in NETCDF
	Air temperature and humidity sensor	$2 \mathrm{m}$		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	10 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	20 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	40 m		NCAR Hygrothermometer	To add
	Air temperature and humidity sensor	60 m		NCAR Hygrothermometer	To add
	Barometer	$2\mathrm{m}$		Vaisala	To add
35	Soil heat flux/moisture sensor			Hukseflux HFP01SC	
rsw04	Datalogger	1.5 m			
					To remove
	Radiometer	10 m			
	CO2/H2O Gas Analyzer	10 m		LICOR 7500	
	3D Sonic anemometer	10 m		CSAT3	
	Barometer	2 m		Vaisala	Pending review. To add
	Wetness Sensor	?		Decagon Leaf	To add
	Soil temperature	$1/4/6/9~\mathrm{cm}$		Hukseflux STP01	
36	Datalogger	$1.5 \mathrm{~m}$			
rsw05					To remove
					To remove
					To remove
	3D Sonic anemometer	10 m		METEK	

To add	Equipment	Orientat	Height (agl)	Equipment	Tower
10 000	Vaisala		2 m	Barometer	
To remove					37
To remove					rsw06
	GillWindMaster		10 m	3D Sonic anemometer	
To remove					
To remove					
To remove					
To remove					
			12 m	Datalogger	
To remove					
	Gill WindMaster		30 m	3D Sonic anemometer	
To remove					
To remove					
	GIllWindMaster		40 m	3D Sonic anemometer	
To remove					
60M in NETCDF	Gill WindMaster		55 m	3D Sonic anemometer	
To remove					
To add	GillWindMaster		20 m	3D Sonic Anemometer	
To add	NCAR		2 m	Thermohygrometer	
To add	NCAR		10 m	Thermohygrometer	
To add	NCAR		$20 \mathrm{m}$	Thermohygrometer	
To add	NCAR		40 m	Thermohygrometer	
To add	NCAR		60 m	Thermohygrometer	
To remove					20
To remove					
	CSAT3		10 m	3D Sonic anemometer	38 rsw07

 $|\mathbb{A}|$

Tower	Equipment	Height (agl)	Orientation	Equipment	
	3D Sonic anemometer	20 m		CSAT3	
39					To remove
rsw08	3D Sonic anemometer	10 m		METEK	
	3D Sonic anemometer	20 m		METEK	
	Barometer	2 m		Vaisala	To add
40	Soil heat flux/moisture sensor			Hukseflux HFP01SC	
rne01	Datalogger	$1.5 \mathrm{m}$			
					To remove
	3D Sonic anemometer	10 m		CSAT3	
	CO2/H2O Gas Analyzer	10 m		CSI IRGA	To add
	3D Sonic anemometer	10 m		CSI IRGA	To add
	Soil temperature	1/4/6/9/10 cm		Huksenflux STP01	To add
	Pyrgeometer			Hukseflux TP01	To add
41					To remove
rne02	3D Sonic anemometer	10 m		RMY8100	
	3D Sonic anemometer	20 m		RMY8100	
42	Datalogger	$1.5 \mathrm{m}$			
rne03					To remove
					To remove
					To remove
	3D Sonic anemometer	10 m		CSAT3	
43	Datalogger	1.5 m			
rne04					To remove

Tower	Equipment	Height (agl)	Orientation	Equipment	
					To remove
					To remove
	3D Sonic anemometer	10 m		RMY8100	
44					
45					To remove
rne06	3D Sonic anemometer	10 m		CSAT3	
	3D Sonic anemometer	20 m		CSAT3	
	Radiometer	20 m		Hukseflux NR01	To add
	Soil temperature	$1/4/6/9 {\rm cm}$		Hukseflux STP01	To add
	Barometer				To add
	Wetness sensor			Decagon leaf	To add
	CO2/H2O Gas Analyzer			LICOR 7500	To add
	Soil heat flux/moisture sensor			Hukseflux HFP01SC	To add
46					To remove
	3D Sonic anemometer	10 m		CSAT3	
	3D Sonic anemometer	20 m		CSAT3	
	CO2/H2O Gas Analyzer	20 m		CSI IRGA	To add
	3D Sonic anemometer	20 m		CSI IRGA	
	Radiometer	20 m		Hukseflux NR01	To add
	Soil temperature	1/4/6/9 cm		Hukseflux STP01	
	Wetness sensor	20 m		Decagon leaf	To add
	Soil heat flux/moisture sensor			Hukseflux HFP01SC	20 000
47	Soil heat flux/moisture sensor			Hukseflux HFP01SC	
v01	Datalogger	$1.5 \mathrm{m}$			

continu	ation from the previous page				
Tower	Equipment	Height (agl)	Orientation	Equipment	
	3D Sonic an <mark>emo</mark> meter	2 m		CSAT3	
	Radiometer	$10 \mathrm{m}$		Hukseflux NR01	
	CO2/H2O Gas Analyzer	10 m		CSI IRGA	
	3D Sonic anemometer	10 m		CSI IRGA	To add
	3D Sonic anemometer	$10 \mathrm{m}$		CSAT3	
	Barometer	$2 \mathrm{m}$		Vaisala	To add
	Soil temperature	$1/4/6/9~{ m cm}$		Hukseflux STP01	To add
	Pyrgeometer				Review
48					
49	Datalogger	$1.5 \mathrm{m}$			
v03	3D Sonic anemometer	2 m		CSAT3	
					To remove
	CO2/H2O Gas Analyzer	10 m		CSI IRGA	
	3D Sonic anemometer	10 m		CSI IRGA	To add
	3D Sonic anemometer	$10 \mathrm{m}$		CSAT3	
50	Soil heat flux/moisture sensor			Hukseflux HFP01SC	
v04	Datalogger	1.5 m			
	3D Sonic anemometer	$2 \mathrm{m}$		CSAT3	
	Radiometer	10 m			Radiometer available?
	CO2/H2O Gas Analyzer	10 m		LICOR 7500	
	3D Sonic anemometer	10 m		CSAT3	
	Wetness sensor			Decagon Leaf	To add
	Soil temperature	1/4/6/9cm		Hukseflux STP01	To add
	Pyrgeometer	· · ·			Review

continuation from the previous page

contint	lation from the previous page				
Tower	Equipment	Height (agl)	Orientation	Equipment	
51	3D Sonic an <mark>emo</mark> meter	2 m		METEK	
v05	3D Sonic anemometer	10 m		METEK	
	3D Sonic anemometer	20 m		METEK	
52	Soil heat flux/moisture sensor			Hukseflux HFP01SC	
v06	Datalogger	$1.5 \mathrm{m}$			
	3D Sonic anemometer	$2 \mathrm{m}$		CSAT3	
	3D Sonic anemometer	10 m		CSAT3	
	3D Sonic anemometer	20 m		CSAT3	
	Wetness sensor	20 m		Decagon Leaf	To add
	CO2/H2O Gas Analyzer	20 m		LICOR 7500	To add
	Soil temperature			Hukseflux STP01	To add
53	Soil heat flux/moisture sensor			Hukseflux HFP01SC	
v07	Datalogger	1.5 m			
	3D Sonic anemometer	2 m		CSAT3	
	3D Sonic anemometer	10 m		CSAT3	
	3D Sonic anemometer	20 m		CSAT3	
	3D Sonic anemometer	12 m		RMY81000	To add
	3D Sonic anemometer 4 m		RMY81000	To add	
	3D Sonic an emometer 6 m		RMY81000	To add	
	3D Sonic anemometer 8 m		METEK	To add	
	$\rm CO2/H2O$ Gas Analyzer 20 m		LICOR 7500	To add	
	Wetness Sensor 20 m		Decagon Leaf	To add	
	Barometer 2 m		Vaisala	To add	
	Radiometer 20 m		Hukseflux NR01	To add	
	Soil temperature $1/4/6/9$ cm		Hukseflux STP01		

Cower Equipment	Height (agl)	Orientation	Equipment	
54				
Extre				
55				
Extre				

|₽

Tables

A.4 Location of ground based equipment

Table 12: Location of ground based equipment

	Station	Achoning	Fauinment	Fasting	Northir -	Flore tion (1)
		Acronym	Equipment	-		Elevation (as	,
1		LRWS #1 - WS_riSW_trSE_SW (DTU)	Scanning LIDAR	33356,32	4277.56	470.4	m
2	102		Scanning LIDAR	33426,19	4324.08	480.3	m
3	103		Scanning LIDAR	$34526,\!35$	5103.50	452.3	m
4	104	LRWS #4 - WS_riNE_trSE_NE (DTU)	Scanning LIDAR	$34578,\!94$	5147.69	454.9	m
5	105	LRWS #5 - WS_riS <mark>W_trNW_NE (D</mark> TU)	Scanning LIDAR	$32926,\!47$	4874.29	485.9	m
6	106	LRWS #6 - WS_riS <mark>W_t</mark> w32 (DTU)	Scanning LIDAR	$33888,\!66$	3798.01	486.3	m
7	107	LRWS #7 - WS_riNE_trNW_SW (DTU)	Scanning LIDAR	$33990,\!61$	5695.30	437.1	m
8	108	LRWS #8 - WS_riNE_tw40 (DTU)	Scanning LIDAR	$34804,\!57$	4807.90	452.8	m
9	111	ZephIR - 447 (Cornell)	Profiling LIDAR	$32379,\!29$	4339.22	236.8	m
10	112	SpiDAR - OliveCoop (Cornell)	Profiling LIDAR	$32383,\!41$	4337.69	236.8	m
11	113	SpiDAR - Ridge (Cornell)	Profiling LIDAR	$33086,\!87$	4688.73	482.5	ts
12	114	ZephIR - 423 (Cornell)	Profiling LIDAR	33996,03	5117.96	309.1	m
13	115	Galion (Cornell)	Scanning LIDAR	34001,73	5116.44	309.5	m
14	121	Radar wind profiler & RASS (NCAR)	Profiling RADAR - RASS	31654,24	3743.27	223.7	\mathbf{ts}
15	122	Radar wind profiler (NCAR/NCAS)	Profiling RADAR	37056,75	3827.09	288.6	\mathbf{ts}
16	123	Sodar-RASS (NCAR)	SODAR - RASS	$35506,\!98$	3177.27	361.9	m
17	124	Water vapor DIAL (NCAR)	Water vapor DIAL	33998,70	5126.68	310.5	m
18	125	Radiosonde site (NCAR)	Radiosonde	33994,22	5113.10	310.5	ts
19	131	CLAMPS - Halo lidar (Oklahoma)	Scanning LIDAR	33956,03	4997.84	296.2	m
20	132	CLAMPS - AERI (Oklahoma)	AERI Atmospheric Emitted Radiance Interferometer	33953,49	5007.43	296.6	m
21	133	CLAMPS - MWR (Oklahoma)	Microwave radiometer	33948,34	5004.68	296.1	m
22	141	Windcube V1 68 BEEHIVE (Colorado)	Profiling LIDAR	34910,57	5638.86	259.7	\mathbf{ts}
23	142	Windcube Profiler V1 49 (Colorado)	Profiling LIDAR	33954,64	5002.00	295.8	ts
24	143	Tethersonde (Colorado)	Tethersonde	33981,84	5004.07	298.4	ts
25	151	USA01 (Notre Dame)	Scanning LIDAR	34409,80	5222.82	447.8	m
26	152	USA2 (Notre Dame)	Scanning LIDAR	34008,00	5132.02	311.1	m
27	153	USA3 (Notre Dame)	Scanning LIDAR	33419,47	5252.65	334.0	m

		from the previous page Acronym	Equipment	Easting	Northing E	Elevation (as	3l)
$\frac{7}{28}$	154	Sodar-RASS (Notre Dame)	SODAR - RASS	34606,96	6117.91	258.4	m
29	155	MWR (Notre <mark>Dam</mark> e)	Microwave radiometer	$34651,\!07$	6170.54	259.8	m
30	156	Radiosond <mark>e (N</mark> otre Dame)	Radiosonde	34647,65	6170.11	259.9	\mathbf{ts}
31	157	Ceilomet <mark>er (Notr</mark> e Dame)	Ceilometer	33922,69	5007.21	294.3	\mathbf{ts}
32	161	USA04 (ARL)	Scanning LIDAR	$33907,\!88$	5844.70	460.8	m
33	162	USA05 (ARL)	Scanning LIDAR	99999	99999	9999	ts
34	163	USA06 (ARL)	Scanning LIDAR	$34491,\!89$	6083.23	265.5	m
35	164	Scintillometer (ARL)	Scintillometer	34495,70	6076.55	268.0	m
36	165	Tethersonde (ARL)	Tethersonde	$34467,\!77$	5214.76	458.2	m
37	171	Scanning Lidar #1 (DLR)	Scanning LIDAR	$34467,\!77$	5214.76	458.2	m
38	172	Scanning Lidar #2 (DLR)	Scanning LIDAR	34128,46	4982.50	323.2	m
39	173	Scanning Lidar #3 (DLR)	Scanning LIDAR	$33127,\!27$	4690.54	480.2	m
40	174	Microwave Radiometer (DLR)	Microwave radiometer	$31667,\!27$	3745.01	222.9	m
41	181	E-NMTO1	NMT Noise monitoring terminal	$34037,\!51$	5141.69	317.5	ts
42	182	E-NMTO2	NMT Noise monitoring terminal	$33922,\!64$	4951.74	296.4	ts
43	183	E-NMTO3	NMT Noise monitoring terminal	33716,76	4763.67	359.5	ts
44	184	E-NMTO4	NMT Noise monitoring terminal	$32771,\!15$	4111.60	250.4	ts
45	185	Windcube (ENERCON)	Profiling LIDAR	$32945,\!76$	4479.03	367.9	ts
46	191	Windcube (Leosphere)	Profiling LIDAR	$34536,\!39$	5112.86	453.1	\mathbf{ts}
47	201	ZSW Scanning Lidar (WindForS)	Scanning LIDAR	$34039,\!10$	5719.85	436.1	\mathbf{ts}
48	211	Microphone #1 (DLR)	NMT Noise monitoring terminal	$33151,\!63$	4665.10	475.2	ts
49	212	Microphone #2 (DLR)	NMT Noise monitoring terminal	$33365,\!30$	4311.11	481.0	ts
50	213	Microphone #3 (DLR)	NMT Noise monitoring terminal	$32396,\!13$	4328.29	238.1	ts
51	214	Microphone #4 (DLR)	NMT Noise monitoring terminal	$34089,\!21$	5005.14	312.8	ts
52	215	Microphone #5 (DLR)	NMT Noise monitoring terminal	$34145{,}57$	4833.54	303.8	ts
53	216	Seismometer (Cornell)	Seismometer	33630,20	3909.50	482.0	\mathbf{ts}
54	217	Seismometer (Cornell)	Seismometer	33564,47	4012.26	479.0	ts
55	218	Seismometer (Cornell)	Seismometer	33196,44	4557.34	477.0	ts

 $|\mathbb{A}|$ Tables

56

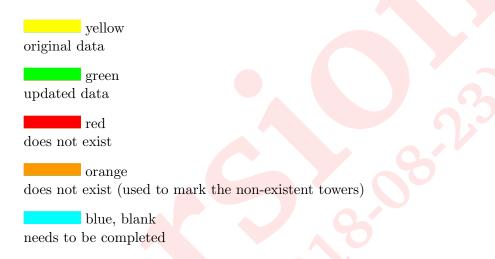
# Station Acronym	Equipment	Easting Northing Elevation (asl)
ource: Remote Sensors/Latex RemoteSensors		06-02-2018 22:56

|₽

Tables

B Contents and organisation of Excel workbooks

There is a total of three Workbooks, each the subject of a separate section: on the location of sonic anemometers (section B.1), the data in the NetCDF files (section B.2) and the location of the ground based equipment (section B.3).


B.1 Towers and Sonics

The *Towers and Sonics* workbook is organized into six worksheets. The main worksheets are *Anemometers* (section B.1.2), with the coordinates of the sonic anemometers as measured, and *Tower location* (section B.1.3), with the determination of the tower location, as described in section 2.3.1.

Data values are linked to worksheet *Anemometers* by formulae, and any future change of the measured values, if necessary, should be in worksheet *Anemometers*.

B.1.1 Worksheet 1: Introduction

The rationale behind the background colour of some cells is the following:

B.1.2 Worksheet 2: Anemometers

A total of 252 lines and 15 columns (from A to P) with the following headings:

- (A) Name: name, compound word with TW## ##M, where the first two digits ## are the tower number from 01 until 54, and the second ## are the nominal height above the ground level.
- (B) NCAR name: name, as in the NCAR data catalogue.

Compound word, @@@####m, where the letters @@@ (up to 3) identify the tower location (tnw, transect North-West, numbered from 1 until 16; tse, transect South-East, numbered from 1 until 13; rsw, ridge South-West, numbered from 1 until 8; rne, ridge North-East, numbered from 1 until 7; v, valley, numbered from 1 until 7), the first two digits ## are the tower number per tower location and the last two ## are the nominal height above the ground level. Two additional towers, Extreme SW and Extreme NE, do not follow this naming convention.

- (C) Easting: the eastward-measured distance in Portuguese coordinate system PT-TM06.
- (D) Northing: the northward-measured distance in Portuguese coordinate system PT-TM06.
- (E) **zboom:** height (above sea level) of the boom centre line in Portuguese coordinate system PT-TM06.
- (F) zt(int): interpolated terrain terrain height (above sea level) from laser survey in 2015 at sonic position.
- (H) Direction: angle α , the boom alignment in degrees towards geographical north, measured clockwise.
- (I) Tilt: angle in degrees towards the horizontal plane (inclination).
- (J) Sonic type: sonic anemometer manufacturer and model
- (K) Owner: owner
- (L) Serial number: serial number
- (M) Height offset: distance (vertical) between the boom and the centre of the sonic sensors
- (N) Number: number, counting

(P) RMY box orientation:

The coordinates for sonic anemometers were first copied from Appendix in [Menke and Mann, 2017, page 9] (yellow cells), checked and completed with new measurements carried out in later stages (green cells). The dialogue that took place during this process is in worksheet entitled *Pending questions*.

B.1.3 Worksheet 3: Tower location

A total of 247 lines and 47 columns (from A to AU) with the following headings:

- (A) Name: name, compound word with TW## ##M, where the first two digits ## are the tower number from 01 until 54, and the second ## are the nominal height above the ground level.
- (B) NCAR name: name, as in the NCAR data catalogue.
 - Compound word, @@@####m, where the letters @@@ (up to 3) identify the tower location (tnw, transect North-West, numbered from 1 until 16; tse, transect South-East, numbered from 1 until 13; rsw, ridge South-West, numbered from 1 until 8; rne, ridge North-East, numbered from 1 until 7; v, valley, numbered from 1 until 7), the first two digits ## are the tower number per tower location and the last two ## are the nominal height above the ground level. Two additional towers, Extreme SW and Extreme NE, do not follow this naming convention.
- (C) Easting (m): the eastward-measured distance in Portuguese coordinate system PT-TM06.
- (D) Northing (m): the northward-measured distance in Portuguese coordinate system PT-TM06.

- (E) **zboom:** height (above sea level) of the boom centre line in Portuguese coordinate system PT-TM06.
- (F) zt(int): interpolated terrain terrain height (above sea level) from laser survey in 2015 at sonic position.
- (G) z0(meas): interpolated terrain terrain height (above sea level) from laser survey in 2015 at sonic position.
- (H) Direction: angle α , the boom alignment in degrees towards geographical north, measured clockwise.
- (I) Tilt: angle in degrees towards the horizontal plane (inclination).
- (J) Sonic type: sonic anemometer manufacturer and model
- (K) Owner: owener of the equipment
- (L) Serial number: Equipment serial number
- (M) Height offset: distance between the boom and the centre of the sonic sensors (Table 4)
- (N) Height: tower height.
- (O) Length (a): length of the lattice tower triangular section (Table 6)
- (P) Distance (b): distance between the boom and the centre of the lattice tower (Fig. 5 and equations (7) and 8).
- (Q) Boom length: length of the boom.
- (R) East 1: term as in equation (9).
- (S) North 1: term as in equation (10).
- (T) East 2: term as in equation (9).
- (U) North 2: term as in equation (10).
- (V) WindsP ID: sensor identidication in WindsP
- (W) Height (agl): location of the sensor, height above ground level
- (X) Tower location / Easting: the eastward-measured distance in Portuguese coordinate system PT-TM06.
- (Y) Tower location / Northing: the northward-measured distance in Portuguese coordinate system PT-TM06.
- (Z) Direction: angle α , the boom alignment in degrees towards geographical north, measured clockwise.
- (AA) Elevation (asl): terrain elevation
- (AB) Easting: the eastward-measured distance in Portuguese coordinate system PT-TM06.
- (AC) Northing: the northward-measured distance in Portuguese coordinate system PT-TM06.

- (AD) Easting: Standard deviation of Easting of sonic anemometers on a tower.
- (AE) Northing: Standard deviation of Northing of sonic anemometers on a tower.
- (AF) Direction: Standard deviation of boom angle (α) of sonic anemometers on a tower.
- (AG) Height (agl): Standard deviation of terrain elevation.
- (AH) Easting: Standard deviation of Easting of tower location.
- (AI) Northing: Standard deviation of Northing of tower location.
- (AJ) Distance: Distance between sonic and lattice tower centre

B.1.4 Worksheet 4: Pending questions

The list of questions that arose during the course of the work.

A total of 20 lines and 4 columns (from A to D) with the following headings:

N.: questions numbered sequentially

Question: the actual question, ending with the name of person, date and time.

Answer: the answer, ending with the name of person, date and time.

Action: the action, ending with the name of person, date and time.

B.1.5 Worksheets 5, 6, 7 and 8: LaTeX...

Worksheets 5, 6, 7 and 8 are conversion of the Excel worksheets into LaTeX commands:

Worksheet 6: LaTeX TowerName the LaTeX commands for Table 2.1, on page 5.

- Worksheet 7: LaTeX Towers converts the data in Worksheet Tower location in Table 10, on page 33.
- Worksheet 8: LaTeX Sonics converts the data in Worksheet *Tower location* in Table 9, on page 28.

B.2 NetCDF Towers

The workbook is organized into a total of 48 worksheets. The first 6 (described in sections B.2.1 to B.2.7) are the results of the data in the remaining 43 worksheets, with the interpretation of the NetCDF files. Subsection B.2.7 is the user's guide of these 43 worksheets.

A common access type to the datasets collected in NetCDF is by XML files that contain the name, description and the units measured by the sensors placed in each station and for each sensor in the station. After discarding the additional information, the merging the NETCDF files into a HTML file gives us the information from all the towers.

B.2.1 Worksheet 1: Introduction

This is the short introduction to the Workbook and its contents. The cell background colours identify the following situations:

yellow original data from NetCDF dark green WindsP data (as of 2017-10-10) identical to NETCDF data, no action needed. red wrong information in WindsP (as of 2017-10-10), to be removed from WindsP orange incomplete information in WindsP (as of 2017-10-10), update @WindsP after answer to pending questions dark blue information on Dataloggers

purple, unnecessary information, no action

B.2.2 Worksheet 2: Totals Summary

A clean and final view of the results, with hyperlinks to every tower.

B.2.3 Worksheet 3: Questions

A list of questions, waiting for answers.

B.2.4 Worksheet 4: Sonics vs NetCDF

The number and distribution of sonic anemometers per tower found by when analysis of the NetCDF files is identical to the list of anemometers whose location was measured. That was the purpose of this worksheet, from lines 1 to 549, and columns A to AI.

Four tables:

- 1. Table 1 (from columns A to G), with the total number of sonics; merging of information in Menke and Mann [2017] (Table A.1 and A.3); and (from columns I to L), comparison between information from sections 2.2 and 2.4, to make sure that all anemometers in Table A.1 are also in NetCDF files.
- 2. Table 2 (from columns N to S), with the information on all sensors identified by interpretation of the NetCDF files.
- 3. Table 3 (from columns U to X), with the information on non-sonic sensors.
- 4. Table 4 (from from lines 1 to 15 and columns Z to AI), number of sensors per manufacturer, model and owner.

B.2.5 Worksheet 5: (total) Sonics+Based Sensor

One table with the total and type of sensor per tower. Lines 1 to 50, per tower, and columns B to K, per equipment. This table contains the total numbers of sensors used in Perdigão and is the major source of information for final numbers in the abstract of the present document and Table 7. One tower per line and one type of sensor per column.

B.2.6 Worksheet 6: NetCDF Towers Summary

The summary of the 43 worksheets, described in section B.2.7. All towers in sequential order (line 1 up to line 493) with the description of the equipment on every tower, from columns A to G.

- (A) Tower: tower name and number;
- (B) ID Code: the code given to the equipment in WindsP;
- (C) Equipment: the equipment located at different heights and measuring different variables in the tower;
- (D) Above the ground: height above the ground.
- (E) Orientation: the equipment orientation (in degrees);
- (F) Equipment: manufacturer and model of the equipment.
- (G) Comments: Comments.

Two additional (small tables) with the:

- 1. List of equipment still missing in *WindsP* inventory and corresponding web links (lines 2 to 8, and columns J to L).
- 2. Towers with information still pending (lines 10 to 15, and column J)
- 3. Towers not available (lines 10 to 15, and columns K and L).

B.2.7 Worksheets 7 to 49: Tower @@@##

tnw##, ts##, ...: 43 worksheets (one per tower, named in accordance with the NCAR convention, section 2.1. The structure of these 43 worksheets is identical and organized in three major blocks.

- Block 1: columns A, B and C (in yellow), with the raw data retrieved from the NETCDF files, with the following columns:
 - (A) Name: name created according with the NCAR convention as in section 2.1. The name is made of three or four parts separated by underscores: the first part are the initials, two or three letters, part of the variable name and enough for identification of the variable; second part, the nominal height (agl) of the sensor in meters and ending with the meter symbol m; and part three, the identification of the tower where the sensor is installed.

- (B) Description: description of the measured variable and instrument used.
- (C) Units: the units measured by the equipment; The second one is the raw data being transformed in a more clear way to understand the data and the colour scheme presented before have been applied consistently. This process was made by splitting the *Name* field from the first table containing the following columns:
- Block 2: columns E to L (in green), the interpretation of the NetCDF data, mostly by splitting the composed names that identify the variables.
 - (E) Variable: the variable measured by the equipment;
 - (F) Height: the height of the equipment in the tower;
 - (G) Tower: tower name and number;
 - (H) Equipment: the equipment located at different heights and measuring different variables in the tower;
 - (I) **Type:** the equipment type: if anemometer, barometer, wetness sensor and so on;
 - (J) Subtype: the equipment subtype. Let us say: if we have an anemometer, the subtype is sonic;
 - (K) WindsP?: a green or red fill means if the equipment is at WindsP or not;
 - (L) Comments: a cell for questions and comments regarding each line. Comments like *To add* and *Need review* helped us to follow the path and remain with a guideline;

The third and final table is a summary of the work done in the second table and compared to the information we had in WindsP. The table was retrieved from WindsP and 2 columns were added: equipment and comments. This table is also the sum of the work done in the two previous tables and is ready to go to the *Summary* sheet since it has all the vital information that we need. The structure remained like this:

Block 3: columns N to S, the summary of the sensors installed on the tower,

- (N) ID Code: the code given to the equipment in WindsP;
- (O) Equipment: this equipment name is the type of equipment and not the name. The name is given below;
- (P) Above the ground: the height of the equipment in the stations;
- (Q) Orientation: the equipment orientation (in degrees);
- (R) Equipment: the equipment name according to the NETCDF data;
- (S) Comments: a section for questions and comments regarding each line in order to keep all the information and needs in the *Summary* sheet too;

B.3 Ground Based Equipment

The Excel/Google workbook is organized into the 5 following worksheets, subject of separate subsections in this appendix:

Remote sensors¹²: location of ground based equipment measured with Leica System and other GPS based devices, including smartphones. Count sensors: summary of sensors per type.

in WindsP: data in WindsP.

Compare: comparison between data in Google/Workbook called *Remote sensors* and in *WindsP*.

Colour index: rationale behind the background colour of some cells.

yellow original data green updated data red does not exist orange data converted from UTM-29N coordinates to PTM-06 blue, blank needs to be completed

Pending questions: list of questions and corresponding answers that occurred during the course of the work.

B.3.1 Worksheet 1: Remote sensors

The information that was measured in PTM-06 coordinates is more accurate, and is to be taken as reference for the coordinates. The location of the equipment measured in UTM-29N coordinates, not as accurate, was converted to PTM-06 (orange cells in columns I and J).

This is the data (item 2, section 3), measured during the last days of the IOP, available in Workbook *SENSOR-COORD/Remote sensors*.

A total of 69 lines and 10 columns (from A to K) with the following headings:

- (A) Station: station number as in the http://windsp.fe.up.pt/experiments/3/stations
- (B) Institution: owner's instrument
- (C) Instrument: instrument
- (D) Code name: name, often colloquial, used to identify the location or the equipment
- (E) Source of measurement: measurement equipment, DTU Laser GPS or not
- (F) Easting (m): the eastward-measured distance in Portuguese coordinate system PT-TM06 or UTM-29N.
- (G) Northing (m): the northward-measured distance in Portuguese coordinate system PT-TM06 or UTM-29N.
- (H) Elevation (m): elevation is the synonymous of terrain height and is referenced against the mean sea level (see section 1.2.2 in page 3.

- (I) Easting-PTM06 (m): the eastward-measured distance in Portuguese coordinate system PT-TM06.
- (J) Northing -PTM06 (m): the northward-measured distance in Portuguese coordinate system PT-TM06.
- (K) and (L) Elevation (m): elevation is the synonymous of terrain height and is referenced against the mean sea level (see section 1.2.2 in page 3.
- (M) Comments: Comments.

B.3.2 Worksheet 2: in WindsP

This is the data in WindsP web site (as of 26 January 2018).

B.3.3 Worksheet 3: Compare

The comparison between data in Worksheet 2 and final data in WindsP (5 February 2018).

B.3.4 Worksheet 4: LaTeX RemoteSensor IOP

For copying of data in Worksheet 1: Remote sensors to LaTex Table.

B.3.5 Worksheet 5: LaTeX RemoteSensor

For copying of data in *Worksheet 3: Compare* to Table 12.

B.3.6 Worksheet 6: Tyler-Rebecca

The verification of data.

B.3.7 Worksheet 7: Count Equipment

Counting the number of scientific instruments. Data in Table 8.

B.3.8 Worksheet 8: Contacts

Contacts (names and email addresses).